Aggressive Performance Goals Met Through Integrated Project Delivery A Case Study of GSA Federal Center South Complex,

A Case Study of GSA Federal Center South Complex, Phase II - Seattle, Washington

Technology in Architectural Practice http://aia.org/TAP

twitter #AIATAP

AIA/CES Reporting Details

All attendees will be eligible to receive:1 LU (AIA continuing education) or1 TU of IDP supplementary education credit.

All attendees at your site will submit for credit by completing the webinar survey/report form. The URL to the survey/form will be listed at the end of the presentation. Certificates of Completion can be download at the end of the survey.

Continuing education questions can be directed to <u>knowledgecommunities@aia.org</u>.

AIA/CES Compliance Statement

"AIA Knowledge" is a Registered Provider with The American Institute of Architects Continuing Education Systems. Credit earned on completion of this program (Course #T12002) will be reported to CES Records for AIA members. Certificates of Completion will be sent to all attendees.

This program is registered with the AIA/CES for continuing professional education. As such, it does not include content that may be deemed or construed to be an approval or endorsement by the AIA of any material of construction or any method or manner of handling, using, distributing, or dealing in any material or product. Questions related to specific materials, methods, and services will be addressed at the conclusion of this presentation.

AIA/CES Course Summary

This session will discuss how architects can improve their design management services as contractors push for a more active role in managing the design phase of projects through Virtual Design and Construction using BIM model; and how ambitious performance, cost and delivery goals were met through a heightened level of integration throughout the accelerated design-build process of a new District Headquarters for the U.S. Army Corp. of Engineers in Seattle, Washington.

AIA/CES Learning Objectives

- 1. Learn LEAN thinking, including set based design and target value design strategies. Learn to apply a rigorous technical, analytic and research-based approach to design and decision making to arrive at best value solutions.
- 2. Understand the heightened level of team integration and new models of knowledge sharing, through the accelerated design-build competition and project delivery process.
- 3. Identify best practices for achieving aggressive building performance, cost and project delivery objectives.
- 4. Discover how an integrated building weaves interdependent systems to achieve a net result greater than the sum of individual systems.

Technology in Architectural Practice http://aia.org/TAP

twitter 💓 #AIATAP

Webinar Schedule

75 min. - Eastern Standard Time (EST)

1:00 - 1:15 pm Welcome, General Comments, and Introductions

Stephen Hagan & Jeffrey Ouellette

1:15 – 2:00 pm

Case Study: GSA Federal Center South Complex, Phase II -Seattle, Washington Jack Avery, Sellen Construction Todd Stine AIA, LEED AP BD+C, ZGF Architects Stephen Hagan, FAIA, US GSA

2:00 - 2:15 pm

Q & A

Sponsors

Premier Leadership Circle Member:

Google SketchUp Pro

Circle Members:

Scholarship Sponsor:

LEARNVIRTUAL™ Education for Building Professionals

Aggressive Performance Goals & IPD Who is TAP?

David Scheer Chair - 2012

Kimon Onuma <u>Chair - 2</u>013

Calvin Kam

Hagan

Fallon

Active Past Chairs

Brian Skripac

Jeffrey Ouellette

Luciana Burdi

na Marty di Doscher

Mike Kenig

Pete Evans

Technology in Architectural Practice http://aia.org/TAP

twitter 💓 #AIATAP

Coming Up...

- Monthly TAP Webinars
 - March 09: BIM For Small Projects II
 - April 13: Interoperability Series
 - May 16: TAP@ AIA2012 DC
- AIA BIM Awards
 - Judging: Monday, February 13, 2012
 - BIMForum, San Antonio, April 25th
- TAP Workshop @ AIA National Convention (DC)
- Local TAP
- BIM Curriculum
- Stay Tuned...

Technology in Architectural Practice http://aia.org/TAP

twitter #AIATAP

Joining the TAP Revolution

ask not only "What can TAP do for you?" but also, "What can I do for TAP?"

Technology in Architectural Practice http://aia.org/TAP

twitter #AIATAP

TAP Committees

BIM Awards

- Stephen Hagan
- Marty Doscher
- Pete Evans

Communication

- Jeffrey Ouellette
- Brian Skripac

Education

David Scheer

Research

- Karen Kensek
- Luciana Burdi

Technology in Architectural Practice http://aia.org/TAP

Events

- Tony Rinella
- Kimon Onuma

Local Discussion Groups

- Brian Skripac
- Mike Kenig

Membership/Volunteers

- David Scheer

Sponsorship

- Stephen Hagan
- Jeffrey Ouellette
- Calvin Kam

Aggressive Performance Goals Met through Integrated Project Delivery

Good design makes a difference

Jack Avery

Integrated Project Delivery/Design Project Manager

Sellen

Todd Stine

Design Project Manager

Good design makes a difference

Project Overview

Theme: Architect, contractor, owner all have design aspirations that exceed performance incentive

Recovery Act Design Build Process Site and Design Objectives Meet Schedule, Price, and Performance

Project Team

Project Team

ZGF Sellen AIA TAP FASTER

Duwamish River Bed

Federal Center South B1202 Redevelopment

ZGF Sellen WAIA TAP FASTER

Site Context

ZGF Sellen AIA TAP FASTER

Site Context

ZGF Sellen WAIA TAP FASTER

Key Design Objectives

Reflect USACE mission Optimize site amenities Solidify site and soil conditions Assure air quality Create a modern 21st century workplace Achieve 30% energy reduction Re-use 1202 materials

Sellen

21st Century Workplace

Create a sense of place Enhance collaboration and identity Reduce silos Provide connectivity Support generational work styles Air quality Daylight and connection to nature Thermal comfort

AIA TAP FASTER

Overall Energy Goals

High Performance Green Building

LEED Gold minimum

Employ integrated approach to meet sustainability goals 30% reduction in energy usage compared to ASHRAE 90.1-2007 **Install advanced meters** for electricity, natural gas, and water Install solar thermal hot water system (integrated approach determined not cost effective) Plan for **on-site renewable energy** systems Reduce **indoor potable water** use by at least 20% Reduce **outdoor potable water** use by at least 50% Manage 95th percentile rain event onsite through infiltration Provide occupancy and daylight sensors **Pre-occupancy flush-out** Salvage, recycle, or reuse at least 50% of construction and

Energy Independence and Security Act

The Energy Independence and Security Act

Section 433, Federal Building Energy Efficiency Standards requires that all new federal buildings and major renovations **meet the energy performance standards of the 2030 Challenge** beginning in 2010.

Design-Build Contract Language:

M&V and Warranty Period Verification. The Government will **retain a pre-determined amount of dollars** from the overall contract award during performance evaluation. Release of **payment** for this withheld amount **will be contingent upon final confirmation that the energy performance standards for the facility (i.e. actual BTU/GSF saved) have been achieved** as verified by the M&V and Warranty Period testing to be conducted within 365 days from final completion. The basis for the predetermined amount shall be equal to .5% of the proposed construction price. Offeror shall calculate the amount and enter it into CLIN 0005 of the Pricing Schedule.

Proposed Betterments

- Geothermal Heat Pump System
- Laminated Glass Skylight at Atrium
- Triple Glazing at Perimeter
- Solar PV Array
- White Capsheet on Roof
- Solar Thermal Hot Water Heating
- Enhanced Lighting Controls
- Rainwater Capture and Reuse
- Smart Building Technology
- Energy Dashboard
- LEED Platinum

AIA TAP FASTER FORWARD 2011

Scheduled Completion by June 2012

Performance Guides the Design

Goal Setting understanding 30% better than ASHRAE

Abstraction of performance Building width / daylight , Orientation / massing

Office flexibility and efficiency

Competition Process, Goals and Integrated Team Twofers: Diagrid: Structural efficiency, Progressive collapse, Support piles Building re-use: Timbers and atrium, Composite beams Atrium: Daylight, Thermal efficiency

AIA TAP FASTER FORWARD 2011

USACE Program Analysis

PROGRAM BY DEPARTMENT

Performance Guiding Building Shape

Orientation

wall (glass)

wall (opaque)

3 Story Configuration

AIA TAP FASTER

The Collaborative Workplace

Flexibility. Efficiency. Daylight. Unified. Open.

Interaction. Collaboration. Central and convenient.

No "Silos".

Optimize Mechanical Systems

Builds Community

GS۵

Sellen

Building Block of Workplace Design

Allows Various Tenant Layouts Maximizes Efficient 8 x 9 Workspaces Optimize Daylighting and Transparency Optimize Visual Connections

Workplace Amenities

Continuous horizontal windows for views 10' ceilings and windows provide space and light Overhead sky light at atrium and at level 3 100% outdoor air filtered to assure air quality Underfloor air distribution for ventilation

Chilled beams provide thermal comfort

Sellen

AIA TAP FASTER FORWARD 2011

Atrium Strategies

Landscape connects to site

Workspace open to daylighting views

Efficient envelope ratio

Ventilation pathways

AIA TAP FASTER

Interior Environment

Exterior Expression

TAP FASTER FORWARD 2011

Structural Design

Diagrid System

- **Carries gravity loads**
- Contributes to the lateral force resisting system
- Serves as progressive collapse system \rightarrow truss action

Level One Floor System

Grade Beams supported by piles assure stability in any soils condition

Geotechnical Design

Geotechnical Design

Sellen

FORWARD 2011

Energy Piles

Materials Reuse Timber

ZGF Sellen AIA TAP FASTER

Reclamation Process

AIA TAP FASTER FORWARD 2011

GSA ZGF Sellen WAIA TAP FASTER

ZGF Sellen AIA TAP FASTER

Systems Modeling

HVAC and envelope Triple glazing, Exterior shading Phase Change, Ground Source and Cooling Tower Daylight and Electrical Lighting

AIA TAP FASTER

Integrated Performance

Conservation first Reduce loads Passive systems Efficient active systems On-site renewable energy generation

Current Energy Model Performance

Daylight Performance

GSA ZGF Sellen AIA TAP FASTER

Workplace Lighting

Chilled Sails

Orientation-Specific Envelope

Daylight orientation River orientation: natural Campus orientation: formal

FORWARD 2011

Sellen

High Performance Green Building

Energy

Thermal Storage

Sellen WAIA TAP FASTER

Ground Source

Water Harvesting

Model Integration Lessons

STRUCTURAL

MECHANICAL

Sellen

AIA TAP FASTER FORWARD 2011

Model Integration Lessons

SMOKE / CFD ANALYSIS

DETAILING

AIA TAP FASTER FORWARD 2011

Create and Test New Products

Through collaborative efforts, the team created and tested three new sustainable products utilized in the building and ready for the market.

Steel Shingles

Composite Beams

Chilled Sails

Systems Integration Mock-up – R&D Lab

M&V Process

Project Scorecard

Federal Center South

Current Point Total: 79 (Gold)

Sustainable Sites: 19 of 26

Water Efficiency: 8 of 10

Energy & Atmosphere: 24 of 35

Materials & Resources: 8 of 14

IEQ: 11 of15

Innovation & Exemplary: 6 of 6

Regional Priority:

3 of **4**

		LE	ED 200	9 for New Construction	February 2	, 20)12
	Ye	llow in	Yes Column	denotes credits that are "anticipated"by GBCI			
'es ?	P No)				Yes	?
19	7	Sus	stainable	e Sites	26 Points	8	1
P	Ť	С	Prereg 1	Construction Activity Pollution Prevention	Required	P	
1		d	Credit 1	Site Selection	. 1		
	5	d	Credit 2	Development Density & Community Connectivity	5		
1		d	Credit 3	Brownfield Redevelopment	1		
5		d	Credit 4.1	Alternative Transportation, Public Transportation Access	6		
		d	Credit 4.2	Alternative Transportation, Bicycle Storage & Changing Rooms	1	1	
		d	Credit 4.3	Alternative Transportation, Low-Emitting & Fuel-Efficient Vehicle	is 3	1	
2		d	Credit 4.4	Alternative Transportation, Parking Capacity	2	1	
	+	c	Credit 5.1	Site Development, Protect or Restore Habitat	1	1	
4	+	d d	Credit 5.2	Site Development, Maximize Open Space	1	1	
4	+	4 d	Credit 6.1	Stormwater Design, Quantity Control	1	1	
4	+	d	Credit 6.2	Stormwater Design, Quality Control	1	1	
4	+-	- C	Credit 7.1	Heat Island Effect, Non-Roof	1		1
+	11	d .	Credit / .2	Heat Island Effect, Roof	1		⊢
	11	d	Credit 8	Light Pollution Reduction	1		
es ?	' NC)			Total	Yes	?
В	2	Wa	ter Effic	iency	10 Points	11	1
-	+	4	Prereq 1	Water Use Reduction	Required	P	-
4	+-	9	Credit 1.1	Water Efficient Landscaping, Reduce by 50%	2	P	-
+	-12	9	Credit 1.2	Water Efficient Landscaping, No Potable Use or Irrigation	2	1	_
4	+-	<u>۹</u>	Credit 2	Innovative Wastewater Lechnologies	2	1	-
2	+	d	Credit 3	Water Ose Reduction, 50% Reduction	2	1	
		d	Credit 3	Water Use Reduction, 35% Reduction	1	1	
Т	Т	d	Credit 3	Water Use Reduction, 40% Reduction	1	1	
es ?	P No)			Total	1	
4 6	5 5	End	ergy & A	tmosphere	35 Points	1	
P		С	Prereq 1	Fundamental Commissioning of Building Energy Systems	Required	1	
P		d	Prereq 2	Minimum Energy Performance	Required		1
2		d	Prereq 3	Fundamental Refrigerant Management	Required	1	
		d	Credit 1	Optimize Energy Performance	1 to 19		
1		d		12% for New Buildings or 8% for Existing Building Renovations	1 1	1	
		d		14% for New Buildings or 10% for Existing Building Renovations	2 1	1	
1		d		16% for New Buildings or 12% for Existing Building Renovations	3 1		
1		d		18% for New Buildings or 14% for Existing Building Renovations	4 1		
1		d		20% for New Buildings or 16% for Existing Building Renovations	5 1	Yes	?
1		d		22% for New Buildings or 18% for Existing Building Renovations	6 1	6	
1		d		24% for New Buildings or 20% for Existing Building Renovations	7 1	1	
1		d		26% for New Buildings or 22% for Existing Building Renovations	8 1	1	
		d		28% for New Buildings or 24% for Existing Building Renovations	9 1	1	
		d		30% for New Buildings or 26% for Existing Building Renovations	10 1	1	
1		d		32% for New Buildings or 28% for Existing Building Renovations	11 1	1	
		d		34% for New Buildings or 30% for Existing Building Renovations	12 1	1	
		d		36% for New Buildings or 32% for Existing Building Renovations	13 1	Yes	?
		d		38% for New Buildings or 34% for Existing Building Renovations	14 1	3	
		d		40% for New Buildings or 36% for Existing Building Renovations	15 1	1	
1		d		42% for New Buildings or 38% for Existing Building Renovations	16 1	1	
1		d		44% for New Buildings or 40% for Existing Building Renovations	17 1	1	
	1	d		46% for New Buildings or 42% for Existing Building Renovations	18 1		
Т	1	d		48%+ for New Buildings or 44%+ for Existing Building Renovation:	19 1		
		1				Yes	?
1		d	Credit 2	On-Site Renewable Energy, 1%	1	79	8
1		d	Credit 2	On-Site Renewable Energy, 3%	1	Certi	ified
1		1 .	Credit 2	On-Site Renewable Energy, 5%	1		
1		17	Credit 2	On-Site Renewable Energy 7%	1	The	Path
ť	1	17	Credit 2	On-Site Renewable Energy 0%	1	5	Min
+	11	1 2	Credit 2	On-Site Renewable Energy, 3%	4	J	and
		1.2	Credit 2	On Site Denowable Energy, 1170			
+		d	Credit 2	On-one Renewable Energy, 13%	1		
+			0	Enhanced Commissioning	2		
2		С	Credit 3	Entanced Commissioning	-		
2		c d	Credit 3 Credit 4	Enhanced Refrigerant Management	2		
2 2 3		c d c	Credit 3 Credit 4 Credit 5	Enhanced Refrigerant Management Measurement and Verification	2		

LEED Credit Scorecard

				Key:	design/construction - submittal phases	
Yes	?	No				
8	1	5	Mat	terials &	Resources 14	Points
Ρ			d	Prereq 1	Storage and Collection of Recyclables	Required
		1	С	Credit 1.1	Building Reuse, Maintain 55% of Existing Walls, Floors & Roof	1
_		1	С	Credit 1.1	Building Reuse, Maintain 75% of Existing Walls, Floors & Roof	1
_		1	С	Credit 1.1	Building Reuse, Maintain 95% of Existing Walls, Floors & Roof	1
-		1	С	Credit 1.2	Building Reuse, Maintain Interior Nonstructural Elements	1
1			C	Credit 2.1	Construction Waste Management, 50% Recycled or Salvaged	1
+			C	Credit 2.2	Construction Waste Management, 75% Recycled or Salvaged	1
+			C	Credit 3.1	Materials Reuse, 5%	1
+			C	Credit 3.2	Materials Reuse, 10%	1
+	_			Credit 4.1	Recycled Content, 10% (post-consumer + ½ pre-consumer)	4
1			6	Credit 5.1	Recycled Content, 20% (post-consumer + 72 pre-consumer) Recipical Materials, 10% Extracted, Processed & Manufactured Regionally	
-	1		č	Credit 5.2	Perional Materials, 10% Extracted, Processed & Manufactured Regionally	
-	-	1	č	Credit 6	Panidly Panewahla Materials - 2.5%	1
1		-	č	Credit 7	Certified Wood - 50%	1
Yes	2	No		or contri		
11	1	3	Ind	oor Envi	ronmental Quality 15	Points
P		—	d	Prereg 1	Minimum IAO Performance	Required
P			d	Prereg 2	Environmental Tobacco Smoke (ETS) Control	Required
1			d	Credit 1	Outdoor Air Delivery Monitoring	1
1			d	Credit 2	Increased Ventilation	1
1			с	Credit 3.1	Construction IAQ Management Plan, During Construction	1
1			с	Credit 3.2	Construction IAQ Management Plan, Before Occupancy	1
1			с	Credit 4.1	Low-Emitting Materials, Adhesives & Sealants	1
1			c	Credit 4.2	Low-Emitting Materials Paints & Coatings	1
1			c	Credit 4.3	Low-Emitting Materials, Flooring Systems	1
1			c	Credit 4.4	Low-Emitting Materials, Composite Wood & Agrifiber Products	1
-	1		d	Credit 5	Indoor Chemical & Pollutant Source Control	1
1			d	Credit 6.1	Controllability of Systems, Lighting	1
		1	d	Credit 6.2	Controllability of Systems, Thermal Comfort	1
1			d	Credit 7.1	Thermal Comfort, Design	1
1			d	Credit 7.2	Thermal Comfort, Verification	1
		1	d	Credit 8.1	Daylight & Views: Daylight	1
		1	d	Credit 8.2	Daylight & Views: Views	1
Yes	?	No				Total
6	_		Inn	ovation	in Design 6	Points
1			a	Credit 1	Pliot Credit Integrated Process	1
1			a		Exemplary Performance	1
+			2		Exemplary Performance	1
+			2		Exemplary Performance SSc0.2 Stormwater Quality	1
1			ä	Credit 2	Exemplary renormance weed water use Reduction	1
Yes	2	No	•	Credit 2	LEED [®] Accredited Professional	Total
3		1	Rec	ional Pr	iority 4	Points
1		H	d	Credit 1	Brownfield Redevelopment	1
1			d		Alternative Transportation, Bicycle Storage & Changing Rooms	1
1			d		Alternative Transportation, Parking Capacity	1
		1	d		Building Reuse, Maintain 95% of Existing Walls, Floors & Roof	1
			d		On-Site Renewable Energy: 13%	1
Yes	?	No	_			Total
79	8	23	Tot	als	Possible Points 1	10
Certi	ried:	40-4	a boiu	ts, Silver:	ou-os points, Gold: 60-79 points, Platinum: 80+ points	
The F	ath	to Pla	tinun	1:	to Manufact Ran Platformer (editors descendidated and	
5	Minii	mum	Addit	tional Credi	ts Needed for Platinum (with a 4 credit buffer)	

Scorecard Statu

Sellen

General Contractor: SELLEN CONSTRUCTION COMPANY

Architect: ZGF ARCHITECTS LLP

Sustainability Lead: SELLEN SUSTAINABILITY Design Consultants: KPFF CONSULTING ENGINEERS, INC. WSP FLACK + KURTZ/BUILT ECOLOGY SITE WORKSHOP LLC SITE WORKSHOP LLC LERCH BATES ROLF JENSEN & ASSOCIATES, INC. HINMAN CONSULTING ENGINEERS, INC. HINMAN CONSULTING ENGINEERS, INC. THE GREENBUSCH GROUP, INC. THAZON ENGINEERING HART CROWSER & ASSOCIATES, INC. LANE COBURN & ASSOCIATES, LLC Key Subcontractors: THE G.R. PLUME COMPANY UNIVERSITY MECHANICAL CONTRACTORS SEQUOYAH ELECTRIC, LLC PATRIOT FIRE PROTECTION MILLENNIUM TILES, LLC NORTH SHORE SHEET METAL WALTERS & WOLF SESSLER R.W. RHINE, INC. BARCOL-AIR LUTRON

AN Integrated Team ACHIEVES Performance + Time + Cost + Quality

AIA TAP FASTER

Questions?

Good design makes a difference

Jack Avery

Integrated Project Delivery/Design Project Manager

Sellen

Todd Stine

Design Project Manager

Good design makes a difference

Aggressive Performance Goals & IPD The End.

THANK YOUN

