

Overview

- Benefits of air movement
- Thermal comfort & ASHRAE Standard 55
- Energy savings: cooling & heating
- Product overview
- Application examples

Thermal Comfort

ASHRAE Standard 55-2010: Thermal Comfort

"Specify the combination of indoor thermal environmental factors and personal factors that will produce thermal environmental conditions acceptable to a majority of the occupants..."

Said another way...

- Quantify comfort for most

What is Thermal Comfort?

Definition:

"That condition of mind which expresses satisfaction with the thermal environment and is assessed by subjective evaluation."

It Is All A Matter Of Perspective

Thermal Comfort – what affects it?

Thermal Comfort Variables:

Environmental Factors

- Air temperature (°F)
- Humidity (% RH)
- Radiant temperature (°F)
- Air speed (fpm)

Personal Factors

- Clothing insulation (clo)
- Metabolic rate (met)

Definitions

- Predicted Percentage of Dissatisfied (PPD)
- Predicted Mean Vote (PMV)
- Operative Temperature

Comfort Zone

- PMV: -0.5 to +0.5
- PPD < 10%

Operative Temperature - Graphical Method The second of th

Benefits of Large Overhead Fans

Cooling Applications

Designing for Thermal Comfort - Cooling

Typical School Cooling Values

- Air temperature (75 °F)
- Humidity (50% RH)
- Metabolic rate (1 met)
- Radiant temperature (75 °F)
- Clothing insulation (0.5 to 1.0 clo)
- Air speed (40 fpm or less)

Typical 8% -0.39

PPD PMV

Designing for Thermal Comfort Thermal Comfort Tool for ASHRAE-55 Alternate Office Cooling Values • Air temperature (79.5 °F) • Humidity (50% RH) • Metabolic rate (1 met) • Radiant temperature (79.5 °F) • Clothing insulation (0.5 to 1.0 clo) • Air speed (125 fpm) Alternate PPD 5% PMV -0.05

Savings from Airflow to Offset Temperature Increase

- According to the U.S. EPA and D.O.E. Energy Savings Calculator*, each degree of this 4.5°F thermostat offset saves 3% to 6% of cooling energy.
- This gives a total saving of 13% to 27% of cooling energy.

*U.S. EPA and D.O.E. Energy Savings Calculator

Airflow in Non-Sensitive Spaces

Reductions of 10-20% in cooling energy

Benefits of Large Overhead Fans Heating Applications

Air Movement for Winter Energy Efficiency

Stratification in Heating Mode

- Difficult to balance heating and cooling requirements with one distribution system
- Warmer air rises towards the ceiling
- Stratification of $0.5 1.0 F^{\circ}/ft$.
- Higher average space temperature, heat loss, equipment runtime, discomfort

Fan Jet Requirement

- Jet that reaches floor
 - Minimum fan size
 - Open areas

Forward Operation (No Reverse)

Winter Destratification - Review 660 650 1. Uniform distribution 2. Reduce heating energy* 3. Reduce outdoor air intake requirements *No change in thermostat setpoint

Condensation Mitigation

• Problem:

- Moist air + cold surface = condensation
 - -Corrosion of metal
 - -Loss of product
 - -Safety

•Solution:

- Olution:

 BAF mitigate condensation by:
 Disturbing stagnant air film
 Increasing surface
 temperature
 Increasing air temperature
 near floor

Improving IAQ

Applications

Government & Military

Health Clubs & Recreation Centers ANYTIME FITNESS.

Churches and Shopping Malls

Outdoor Covered Areas

Residential Spaces

Large Diameter Fans and Energy Efficiency

LEED & Large Diameter Fans

Where fans can help:

- Energy & Atmosphere
 - Reduce Energy Use
- Indoor Environmental Quality
 - Increase Thermal Comfort
- Reduce Ventilation IntakeInnovation & Design Process
 - Materials Reduction, etc...

LEED Details

http://www.bigassfans.com/page/leed_pts

Big Ass Fans Testing Laboratory

Locust Trace

Summary - Benefits of Large Diameter Fans

- Improve thermal comfort
- Summer and winter energy savings
- Improve air distribution
- Reduce condensation

Contact information: Greg Phipps gphipps@bigassfans.com