DESIGN COMPUTATION

WHERE DOES IT PROVIDE VALUE?METRIC-PROVENSYSTEM-DRIVENMODELING HUMAN(DESIGN SOLUTIONSEFFICIENCIESEXPERIENCE

What problems are you trying to solve?

Develop Simple, Modular Tools.

PRINCIPLE CONCEPTS: GEOMETRY AND DATA

POINTS, CURVES AND SURFACES

HOW DOES IT FIT INTO THE PROCESS?

Traditional Process

Parametric Process

Rapid Design + Documentation of Design Variations

Develop Parametric System					

Design Variation

MASSIVELY INTEGRATED PARAMETRIC MODEL

CONTROL PANEL

	Above-ground Area Net Atria 084,678 sm			
Gateway Params 0 Angle Gateway Point 1 1 Angle Gateway Point 1 2 Angle Gateway Point 1 3 Pinch Factor 4 Straight Gateway Elev 5 Straight Gateway Trans 6 Max Elevation 7 Min Elevation 8 Loggia Height Notes Non. March 5 Gateway heights reduced from 24m to 19m to allow structure to align better w/ platform slabs.	South Angle Gateway Elev 23 South Angle Gateway Elev South Angle Gateway Elev 23 North Angle Gateway Elev 23 North Angle Gateway Elev	Consta Angle Geterne		
	North Straight Galeway Elev 22		aining 22 objects.	
	South Straight Galeway Elev 22			

INTEROP PROCESS

INTEROP PROC

20 VARIATIONS DEVELOPED OVER THE COURSE OF THE PROJECT

CASE STUDY: DAYLIGHTING

GENETIC OPTIMIZATION

SPACE PLANNING WITH DAYLIGHTING

TRAVEL DISTANCE

Travel Distance and Corridor Efficiency Measurement Methodology:

- Travel Distance Definitions:

 Actual Travel Distance: The measurement, in meters, using corritors, between Point A and Point 8.

 Control of the second seco

- Travel Ethicency Distance: Klert to Equation.
 Travel Ethicency Distance: Klert to Equation.
 End Point: That point on the floor plans where the measurement will terminate or begin.
 Center of Obor: The exact center of the door between door opening, regardless of door leaf size. Elevator doors will be the center of the cab opening.

Travel Distance and Corridor Efficiency Measurement Methodology:

Travel Efficiency Distance Calculation Equations

How to Calculate Corridor Efficiency:

Corridor = - Efficiency =	Euclidian Distance	Relative Percent		
	Actual Design A to B distance measurement	Corridor Efficient		

How to Calculate Travel Efficiency Distance:

(6		~		۱	
Travel	16	Average	Average	Average		Travel
Efficiency =	1-	Corridor	× Actual Path	+ Actual Path	> =	Efficiency
Distance		Efficiency >	of Travel	of Travel		Distance
l	<u> </u>		/)	

Travel Distance and Corridor Efficiency 7

Travel Distance and Corridor Efficiency 11

SOLAR ANALYSIS

VIEW ANALYSIS

Views are calculated from every point on the facades of the three towers to the specified landmark. Darker colors indicate a better view of the landmark in question.

NO VIEWS

1

Catalan Evolution and Construction

X X \rightarrow X X -As X \gg $\langle \rangle$ X \rightarrow XX \rightarrow \rightarrow \rightarrow \Rightarrow \bigotimes $\langle \rangle$ K D K- A A A X × × XX $\left(\right)$ $\langle \rangle$ \rightarrow \gg A h

Catalan structural module studies - Earlier generation module shown circled

Proposed catalan structural . module

Earlier generation catalan structural module

COLLABORATION

Pattern and Materials

1 Rolled Steel Tube Members

2 Flat Plate Steel Webbing

4 Exterior Mullion & Glazing Overlay

COLLABORATION

_ 0 X

Visualize XYZs in the Watch 3d before making Revit Elements

_ 0 X

COLLABORATION

