New Hospital Tower Rush University Medical Center
Chicago, IL, United States

<table>
<thead>
<tr>
<th>SQ FT</th>
<th>83,000 BGSF</th>
</tr>
</thead>
<tbody>
<tr>
<td>664 BEDS</td>
<td></td>
</tr>
</tbody>
</table>

ARCHITECT(S) Perkins+Will

OWNER/AFFILIATION Rush University

COMPLETION DATE 2012

ABOUT | DESIGN INTENTIONS
This hospital is part of a campus-wide transformation project, which also includes an orthopedic building, parking structure and new loading and delivery systems. The 800,000-square-foot hospital consists of 386 patient beds along with diagnostic and treatment facilities, such as surgery, radiology and emergency departments. The hospital is sited adjacent to the Eisenhower Expressway (a major arterial feeding the central area of Chicago) on the north, Ashland Avenue on the east and Harrison Street, the major internal street for the Rush Campus, on the south.

Image Sources: https://www.archdaily.com/443648/new-hospital-tower-rush-university-medical-center-perkins-will
The organizational concept consists of a rectangular seven-story base, containing new diagnostic and treatment facilities, topped by a five-story curvilinear bed tower.

The base connects to existing diagnostic treatment facilities to create a new continuous interventional platform.

Part of the ground level of this base contains an emergency department, which has been designed to be an advanced emergency response center for the City of Chicago.

The geometry of the bed tower maximizes views and natural light for patient rooms while also creating an environment for efficient and safe health care.
New Hospital Tower Rush University Medical Center
Chicago, IL, United States

KEY SPACE:
- Mechanical / Electrical / Telecom
- Departmental Circulation
- Staff Circulation
- Public Area
- Patient Room
- Procedure Room
- Support
- Emergency Department
- Semi-restricted corridor
- Sterile Core
- Vertical Circulation

Image Sources: https://www.archdaily.com/443648/new-hospital-tower-rush-university-medical-center-perkins-will

Floor Plan:

CROSS SECTIONAL SECTION

ELEVATION

The east elevation works in tandem with the orthopedics building to create and reinforce the new entry boulevard from Ashland.

The south elevation weaves the rectilinear and curvilinear geometry of base and bed tower together to scale the building down to relate to the environment of the entry boulevard.

The difference in north and south elevation also responds to the internal organizations of the base. The simpler north elevation expresses the back of house staff connection corridors. The more layered and scaled down south facade contains the public elements of the base, such as lounges and waiting areas.
At the junction of new and old hospital is a multi-story entry pavilion whose roof is landscaped to provide a patient staff garden at level four that connects by bridge to the existing parking structure and has upper level patient check-in facilities.

 Skylights act as roof garden sculptural elements and provide natural light for the entry pavilion below. The walls of one of these skylights project down to the floor. Of the entry pavilion to introduce an exterior landscaped space without compromising internal contamination issues associated with plantings.
CASE STUDY ANALYSIS

AUTOMATED GUIDED VEHICLES (AGVS), MOBILE ROBOTS THAT TRANSPORT MEDICAL SUPPLIES, CLEAN AND SOILED LINENS, AND REGULATED MEDICAL WASTE AND TRASH ACROSS LONG DISTANCES.

STRUCTURAL COLUMNS ARE OUTFITTED WITH POWER AND OXYGEN LINES TO ALLOW TREATMENT TO BE EXPANDED INTO THE LOBBY IN THE EVENT OF A LARGE-SCALE EMERGENCY.

WINDOWS IN THE CORRIDOR PROVIDE DAYLIGHT AND NATURAL VIEW.

NEW HOSPITAL TOWER RUSH UNIVERSITY MEDICAL CENTER
Chicago, IL, United States

SUSTAINABILITY FEATURES

1. TOWER AHUs
2. CISTERN
3. GREEN ROOF
4. CENTRAL PLANT

Case Study Format Developed By: AIA Academy of Architecture for Health | Research Initiatives Committee

Rush University Medical Center | CASE STUDY ANALYSIS
AIA Academy of Architecture for Health | Research Initiatives Committee
New Hospital Tower Rush University Medical Center
Chicago, IL, United States

PROJECT SUMMARY:

Project: New Hospital Tower Rush University Medical Center
Project location: Chicago, IL
Owner/Client: Rush University Medical Center
Architect: Perkins+Will
Construction manager: Power Jacobs Joint Venture
Structural engineer: Thornton Tomasetti
Electrical engineer: Environmental Systems Design (ESD)
Interior Designer: Perkins+Will
Civil Engineer: Terra Engineering
Light Designer: HDLC
Landscape Architect: Hitchcock Design Group
Photographs/Illustrations: Steinkamp Photography

Construction cost: $398,000,000
Building area GSF: 830,000 SF
Cost per square foot: $480/SF
Completion date: 2012

AIA/AAH DESIGN AWARD WINNER
Category: Innovations in Planning and Design Research, Built and Unbuilt

JURY COMMENTS
- The jury applauds the transformation of a big box retail store into a simple, sophisticated and elegant healthcare clinic.
- From ideation to execution the layering of color and perforated skin adds architectural quality to the façade.
- The iconography is playful without being childish welcoming patients and families into the building.
- The selective use of color is balanced with a wood screen wall which anchors the interior space.
- Visibility into the basketball court from the waiting area and benches along the corridor are a nice touch.

A LARGE LANDSCAPED TERRARIUM IN THE ENTRY PAVILION BRINGS THE OUTDOORS IN WHILE MAINTAINING A CONTAMINATE FREE ENVIRONMENT.

WINDOWS AT THE TIPS OF THE BED TOWER’S WINGS ALLOW NURSING STAFF TO HAVE DAYLIGHT AND VIEWS.

PRIVATE NICU ROOMS LOCATED STEPS AWAY FROM NURSING STATIONS

ELECTRICITY ARE HIDDEN IN THE COLUMNS

THE EXTERIOR CORRIDORS OF THE INTERVENTIONAL FLOORS

Image Sources: https://www.archdaily.com/443648/new-hospital-tower-rush-university-medical-center-perkins-will

RUSH UNIVERSITY MEDICAL CENTER | CASE STUDY ANALYSIS
AIA Academy of Architecture for Health | Research Initiatives Committee

Case Study Format Developed By:

[Image: Rush University Medical Center | AIA Academy of Architecture for Health | Research Initiatives Committee]