Optimizing for Success: *Processes, Tools and Tactics to Help Architects Achieve Their Goals*

Copyright notice

This presentation is protected by US and International Copyright laws. Reproduction, distribution, display and use of the presentation without written permission of the speaker is prohibited.

© The American Institute of Architects 2020

Project Delivery

Compliance statement

"AIA Knowledge" is a Registered Provider with The American Institute of Architects Continuing Education Systems (AIA/CES). Credit(s) earned on completion of this program will be reported to AIA/CES for AIA members. Certificates of Completion for both AIA members and non-AIA members are available upon request.

This program is registered with AIA/CES for continuing professional education. As such, it does not include content that may be deemed or construed to be an approval or endorsement by the AIA of any material of construction or any method or manner of handling, using, distributing, or dealing in any material or product.

Questions related to specific materials, methods, and services will be addressed at the conclusion of this presentation.

Project Delivery

Learning objectives

- Identify the factors that enhance an architect's ability to achieve design intent during design, documentation and construction phases.
- Quantify the impact of factors outside the reasonable control or influence of the design/construct team can have an impact on achieving design intent.
- Present ways to convert waste into higher value for the owner and how buildings can **now** be planned and designed toward more certain outcomes – and in a fraction of the time and effort that traditional design/delivery. methods take.
- Demonstrate new tools toward fully-integrated, highly-automated building development to deliver a capital project.

Project Delivery

Agenda

- New research by Dodge Data & Analytics
- Rethinking Construction by Building Catalyst

Dodge research

- Overview of research
- Frequency of achieving design intent
- Design phase activities
- Documentation phase activities
- Construction phase activities
- Factors outside control of design/construct team
- Major drivers and obstacles

Project Delivery

Every building design project regardless of how modest or grand, simple or complex, has a design intent relevant to its functional and aesthetic objectives and its budget and logistical constraints.

Achieving or exceeding the design intent is a high priority for architects, but design and construction is a complex process with many variables that can impact satisfactory achievement of design intent.

What can architects do during the design and construction of a building project to optimize the achievement of design intent?

Online survey:

- 212 Architects (USA) in December 2019
- Annual revenue for architectural services including interior design but excluding engineering construction or other services of at least \$500,000

The purpose of this study is to:

• Identify factors, conditions, practices and behaviors that have the most impact on successful achievement of <u>design intent</u>.

For this study "design intent" is:

• The state of your expectation for scope, quality, cost, aesthetics and function of a building project at the point you consider the design to be complete and approved, even if construction started before that point for schedule acceleration reasons.

If design must be changed during construction:

- If it caused by factors legitimately <u>outside the</u> <u>control of the design and construction team (e.g.,</u> unforeseen site conditions, significant changes in market conditions, client-directed changes) consider <u>that modified design</u> to be what you evaluate for achieving design intent.
- If caused by <u>factors that could/should reasonably</u> <u>have been avoided</u> (e.g., design, construction, coordination, supplier or owner-related errors, omissions, miscommunications, etc.) considered as <u>impediments to achieving design intent and</u> <u>not legitimate modifications</u> to the design intent.

Dodge research

- Overview of research
- Achieving design intent
- Design phase activities
- Documentation phase activities
- Construction phase activities
- Factors outside control of design/construct team
- Major drivers and obstacles

Project Delivery

On what percentage of your projects are you satisfied that your design team has developed a design intent with the client that is...?

GOO

GOOD FOR THE CLIENT: Meets the client's needs as well as possible within the given constraints of the project	3%15%	5	6%	25%
GOOD FOR YOUR FIRM: Satisfies your firm's approach, priorities and reputation for design solutions	1% 9%	34%	42%	13%
GOOD FOR THE CONTRACTOR: Effectively conveys the design intent to the contractors and is reasonably constructible within the given constraints of the project	2% 13%	40%	349	% 9%
■ 25-49% ■ 50-74%	■ 75-8	39% 🗖 9	0-99%	100%

How important is <u>each phase</u> to achieving design intent?

DESIGN PHASE ACTIVITIES – Working effectively with the client and other design 2% 23% 75% team members to develop the approved design intent DOCUMENTATION PHASE ACTIVITIES -Working effectively with the design team to adequately document the design intent 29% 67% 3% for bidding, procurement and construction purposes CONSTRUCTION PHASE ACTIVITIES -Working effectively with all project team members to maintain the design intent during construction, including clarifying the 36% 56% 7% design intent for contractors, resolving issues, evaluating alternatives as necessary, modifying t ■ Very High Importance Low Importance Medium Importance High Importance

Dodge research

- Overview of research
- Achieving design intent
- Design phase activities
- Documentation phase activities
- Construction phase activities
- Factors outside control of design/construct team
- Major drivers and obstacles

Project Delivery

DESIGN PHASE Rate the *impact* of each of these factors on your ability to successfully develop the design intent with the client

FACTORS SURVEYED (Shown alphabetically)

- 1. Adequate understanding and documentation of existing conditions that will impact design
- 2. Capturing and distributing detailed minutes of every design meeting
- 3. Embedding a team with the client
- 4. Having a BIM execution plan that includes key members of the design team
- 5. Having a Construction Manager engaged for pre-construction services
- 6. Site visits to, or visual examples from, other projects that help convey your proposed design solutions to the client
- 7. Use of AIA COTE Top Ten Toolkit
- 8. Use of BIM by all the key members of the full design team
- 9. Use of BIM by your firm
- **10. Working under a Design-build agreement**
- 11. Working under an Integrated Project Delivery agreement

DESIGN PHASE Rate the *impact* of each of these factors on your ability to successfully develop the design intent with the client

Adequate understanding and documentation of existing conditions that will impact design	20%	76%		
Site visits to, or visual examples from, other projects that help convey your proposed design solutions to the client	35%	55%	55%	
Capturing and distributing detailed minutes of every design meeting	37%	49%		
Use of BIM by your firm	28%	52%		
Use of BIM by all the key members of the full design team	26%	50%		
Having a Construction Manager engaged for pre- construction services	35%	36%		
Having a BIM execution plan that includes design team members	34%	31%		
Embedding a team with the client	23%	30%		
Working under an Integrated Project Delivery agreement	26%	18%		
Working under a Design-Build agreement	31%	9%		
Use of AIA Cote Top Ten Toolkit	14% 4	!%		

Medium Positive Impact
High Positive Impact

DESIGN PHASE Frequency of the factors that help to successfully develop the design intent with the client

(In same order)

Adequate understanding and documentation of existing conditions that will impact design (n=204)	11%	25%	349	6	27%
Site visits to, or visual examples from, other projects that help convey your proposed design solutions to the client		19%	32%	2	20%
Capturing and distributing detailed minutes of every design meeting (n=183)	11%	28%	31	%	23%
Use of BIM by your firm (n=169)	13% 1	15%	29%	3	33%
Use of BIM by all the key members of the full design team (n=161)	17%	28%	6	29%	14%
Having a Construction Manager engaged for pre-construction services (n=152)	309	%	24%	14%	3%
Having a BIM execution plan that includes design team members (n=139)	24%		29%	16%	14%
Embedding a team with the client (n=113)	17%	22%	17%	13%	
Working under an Integrated Project Delivery agreement (n=95)	23%	16%	6 16%	2%	
Working under a Design-Build agreement (n=86)	22%	17%	6 <mark>7%</mark> 2	%	
Use of AIA Cote Top Ten Toolkit (n=38)	26%	6 18	8% 169	%	
50-74%	75-8	9%	90-9	9%	100%

BIM IN THE DESIGN PHASE How <u>valuable</u> are each of these BIMrelated activities during design? (before contract documents)

17% 47%		
45%	33%	
38%	22%	
40%	20%	
27%	12%	
23% 5%		
	47% 45% 38% 40% 27% ∫	

■ Medium Value ■ High Value ■ Very High Value

Dodge research

- Overview of research
- Achieving design intent
- Design phase activities
- Documentation phase activities
- Construction phase activities
- Factors outside control of design/construct team
- Major drivers and obstacles

Project Delivery

DOCUMENTS PHASE On what percentage of your projects are you satisfied that your design team has documented the design intent in its contract documents?

DOCUMENTS PHASE Rate the *impact* of each of these factors on your ability to successfully document the design intent in your contract documents

FACTORS SURVEYED (Shown alphabetically)

- 1. Adherence to your firm's documentation standards
- 2. Coordination of documents between disciplines prior to issue
- 3. Having a BIM execution plan that includes design team members
- 4. Having a Construction Manager engaged for preconstruction services
- 5. Informal review of contract documents by a contractor prior to issue (when there is not a contractor on the project for pre-construction services)
- 6. Peer review (by other design professionals) of contract documents prior to issue
- 7. Use of AIA COTE Top Ten Toolkit
- 8. Use of BIM by all the key members of the full design team
- 9. Use of BIM by your firm
- **10.** Working under a Design-build agreement
- 11. Working under an Integrated Project Delivery agreement

DOCUMENTS PHASE Rate the *impact* of each of these factors on your ability to successfully document the design intent in your contract documents

8%	Coordination of documents between disciplines prior to issue	
	Adherence to your firm's documentation standards	
2	Use of BIM by your firm	
	Use of BIM by all the key members of the full design team	
	Peer review (by other design professionals) of contract documents prior to issue	
	Having a Construction Manager engaged for pre- construction services	
	Informal review of contract documents by a contractor prior to issue	
	Having a BIM execution plan that includes design team members	
	Working under a Design-Build agreement	
2	Working under an Integrated Project Delivery agreement	
10%	Use of AIA Cote Top Ten Toolkit	
		•

Medium Positive Impact

High Positive Impact

DOCUMENTS PHASE Frequency of the factors that help to successfully document the design intent in your contract documents

(In same order)

prior to issue (n=207)

(n=201)

team (n=163)

construction services (n=139)

team members (n=132)

agreement (n=77)

75-89% **50-74% 90-99%**

100%

Dodge research

- Overview of research
- Achieving design intent
- Design phase activities
- Documentation phase activities
- Construction phase activities
- Factors outside control of design/construct team
- Major drivers and obstacles

Project Delivery

BUILD PHASE On what percentage of your projects are you satisfied that your design team has worked effectively with the owner and/or owner's representative to maintain the design intent during construction?

BUILD PHASE Rate the *impact* of each of these factors on your ability to successfully maintain the design intent during construction

FACTORS SURVEYED (Shown alphabetically)

- 1. Adequate understanding and documentation of existing conditions that will impact construction
- 2. Contractor uses cost modeling (5D)
- 3. Contractor uses schedule modeling (4D)
- 4. Having a BIM execution plan that includes contractors
- 5. Having a highly engaged client during construction
- 6. Positive chemistry among key project team members (e.g., shared goals, good communication, "projectfirst" attitude)
- 7. Quality (i.e., completeness, clarity and accuracy) of design team's contract documents
- 8. Use of BIM by contractors
- **9.** Working in a "big room" environment (where all key players are co-located)
- 10. Working under a Design-build agreement
- 11. Working under an Integrated Project Delivery agreement
- **12.** Working with a Construction Manager (instead of a General Contractor that was retrained through a design-bid-build process)

BUILD PHASE Rate the *impact* of each of these factors on your ability to successfully maintain the design intent during construction

Quality (i.e., completeness, clarity and accuracy) of design team's contract documents	<mark>9%</mark>	89%
Positive chemistry among key project team members (e.g., shared goals, good communication, "project	14%	83%
Adequate understanding and documentation of existing conditions that will impact construction	20%	75%
Having a highly engaged client during construction	30%	60%
Use of BIM by contractors	33%	28%
Working with a Construction Manager instead of a General Contractor that was retrained through a	35%	23%
Working in a "big room" environment (where all key players are co-located)	30%	23%
Having a BIM execution plan that includes contractors	31%	20%
Contractor uses cost modeling (5D)	29%	16%
Contractor uses schedule modeling (4D)	31%	13%
Working under a Design-build agreement	25%	15%
Working under an Integrated Project Delivery agreement	24%	14%
Medium Positive Impac	t 🔳 Higi	n Positive Impact

BUILD PHASE Frequency of the factors that help to successfully maintain the design intent during construction

(In same order)

(n=191)

players are co-located (n=112)

(n=107)

Working under a Design-build agreement (n=83)

Working under an Integrated Project Delivery agreement (n=81)

Dodge research

- Overview of research
- Achieving design intent
- Design phase activities
- Documentation phase activities
- Construction phase activities
- Factors outside control of design/construct team
- Major drivers and obstacles

Project Delivery

OTHER FACTORS THAT IMPEDE ACHIEVEING DESIGN INTENT How much do you agree or disagree with each of these statements?

FACTORS SURVEYED (Shown alphabetically)

- 1. Client does not have a great deal of design/construction experience
- 2. Client is a public (government) entity
- 3. Client is using a third-party Owner's Representative
- 4. Owner is a commercial developer instead of an owner-occupier
- 5. Owner is demanding an accelerated schedule
- 6. Project involves a substantial amount of renovation
- 7. There are a lot of client-directed changes during construction

OTHER FACTORS THAT IMPEDE ACHIEVEING **DESIGN INTENT** How much do you agree or disagree with each of these statements?

	There are a lot of client-directed changes during construction	<mark>5%</mark> 12	%	48%		34%		
	The owner is demanding an accelerated schedule	<mark>6%</mark> 12	2%	54%		27%		
	The client does not have a great deal of design/construction experience	2% <mark>9%</mark>	19%	43%	•	26	%	
Th	e owner is a commercial developer instead of an owner-occupier	4% 139	6	39%	34	%	10%	
	The client is using a third-party Owner's Representative	4% 15	%	39%	30)%	11%	
ΤI	ne project involves a substantial amount of renovation	5%	22%	32%	3	85%	6%	
	The client is a public (government) entity	3% 169	%	53%		22%	7%	

■ Strongly Disagree ■ Disagree ■ Neutral ■ Agree ■ Strongly Agree

OTHER FACTORS THAT IMPEDE ACHIEVEING **DESIGN INTENT** How much impact do the Authorities Having Jurisdiction (i.e. local building officials) have on your ability to achieve design intent?

OTHER FACTORS THAT IMPEDE ACHIEVEING **DESIGN INTENT** How much impact does the *Project* Delivery Model have on your ability to achieve design intent?

BIGGEST CONTRIBUTOR TO ACHIEVEING DESIGN INTENT ("in a few words" open text responses)

Communication/collaboration within team	26%
Clear goals/positive attitude	15%
Full documentation/understanding of documents	14%
Educated/engaged owner	10%
Budget/cost issues/cost control	7%
Multiple BIM platforms/BIM/right tools/workflow integration	6%
Skilled professionals	4%
Client management/support	2%
The design/compelling design	2%

FREQUENCY OF EXCEEDING DESIGN INTENT

BIGGEST CONTRIBUTOR TO EXCEEDING DESIGN INTENT ("in a few words" open text responses)

Communication/collaboration within team	24%
Clear goals/positive attitude	16%
Educated/engaged owner	12%
Multiple BIM platforms/BIM/right tools/workflow integration	9%
The design/compelling design	7%
Full documentation/understanding of documents	7%
Budget/cost issues/cost control	4%
Skilled professionals	<mark>3%</mark>

Frequently or Very Frequently Exceed Design Intent (n=67)

Agenda

• New research by Dodge Data & Analytics

Rethinking Construction by Building Catalyst

Starting with Knowledge-based BIM (Modeling, Measuring and Management)

Building
 CATALYST

an AIA Knowledge Community

Architects

The Team

Bruce Carlson Building Catalyst Software Development

Tom Case Replay Destinations VP Construction

Jayme Couchene The Boldt Company Development Director

Mark Dietrick, AIA Case Technologies BIM Technology

Doug Heinrich Mortenson Company Estimating Director

Scott Jasperse Building Catalyst Software Development

Sue Klawans Consultant Lean Process

Nick Papadopoulos Eos Group President

Mark Sands, PE Building Catalyst Data Analysis/Research

Jourdan Trice Shawmut D and C Cost Tech Integration

Dave Umstot Umstot Solutions Lean Process

Scott Warren Ryan Companies VP Preconstruction

The American Institute of Architects

an **AIA** Knowledge Community

The Problem

2017 Report - McKinsey Global Institute

... construction appears to be in a time warp. *In the United States since 1945, productivity* in manufacturing...has grown as much as 1500 percent; productivity in construction has barely increased at all...

Building cost escalation continues to grow two to three times faster than the national inflation rate.

Architects

Project Delivery

Reinventing Construction Rethinking Planning to Production

5 Major Shifts

Project Delivery

What is BIM?

National BIM Standard

A BIM is a digital representation of physical and functional characteristics of a facility.

BIM serves as a shared *knowledge resource* for information about a facility forming a reliable *basis for decisions* during its lifecycle from *inception* onward.

The American Institute Project Delivery

BIM serves as a shared *knowledge resource* for information about a facility forming a reliable *basis for decisions* during its lifecycle from *inception* onward.

Knowledge-based BIM

A BIM is a digital representation of physical and functional characteristics of a facility.

Design-based BIM

Project Delivery

Current State

Relative Magnitude of Decisions Impacting Outcomes

Project Delivery

an **AIA** Knowledge Community

••• Building ••• CATALYST

Relative Magnitude of Decisions Impacting Outcomes

Project Delivery The American an AIA Knowledge Community

Building
 CATALYST

Shift 2 – Purpose-driven (AKA Owners Business Case) Planning and Execution

Project Delivery

Building
 CATALYST

Shift 3 – Simple Systems-driven Planning and Execution

Integrated Project **Data** – then Delivery

Integrated System of Critical Data

Project Delivery

of Architects

Shift 3 – Simple Systems-driven Planning and Design

Shift 3 – Simple Systems-driven Planning, Design and Cost Management

Shift 4 – Industry-wide Knowledge (Big Data) System

Shift 4 – Industry-wide Knowledge (Big Data) System

What is Big Data?

Big data is high-volume, high-velocity and/or high-variety information assets

that demand cost-effective, innovative forms of information processing

that enable enhanced insight, decision making, and process automation.

nstitute

Project Delivery

●● Building ●● CATALYST

Shift 4 – Industry-wide Knowledge (Big Data) System

What does Big Data do for us?

- Project outcomes can be known prior to design
- Rapid, multi-scenario prototypes now inform decision-making and target setting
- A project guidance system insures more certain and optimal results
- A platform for measurement-based process improvement is established

Project Delivery

an ${\bf AIA}$ Knowledge Community

"Data, Data, Data. I can not make bricks without clay." Sherlock Holmes

SHERLOCK HOLMES

100 Project Data Research Study

The American Pro Institute an Al

Project Delivery

100 Project Data Research **23 States**

The American Project Delivery

100 Project Data Research 20 Builders

"Data, Data, Data. I can not make bricks without clay."

Sherlock Holmes

SHERLOCK HOLMES

The American Institute of Architects

an **AIA** Knowledge Community

Project Delivery

BOLDT

AGILIS

Bouma

BRASFIELD GORRIE GENERAL CONTRACTORS

CHRISTMAN SINCE 1894

GRANGER

mascaro

MCCARTHY.

CONSTRUCTION SERVICES

100 Project Data Research **10 Categories - 26 Types**

Hospital

- General •
- Critical Access
- Rehabilitation

Medical (Ambulatory)

- Medical Center
- Medical Clinic
- Medical (Single Practice)
- Cancer Center •
- Freestanding Emergency

Office

- Office •
- Office (Multi-tenant)

Higher Ed (University)

- **College Academic** ٠
- **College Science** ۰
- **Research Engineering** ۰

K12 Education

- **Elementary School**
- High School •
- Charter School

Multi-unit Residential

- Multi-unit Apartment
- **Student Housing** .
- Senior Living
- **Skilled Nursing** •

Hospitality

Hotel (Full Service •

Industrial

- Manufacturing •
- Clean Process
- Warehouse

Data Center

Tier 2 Data Center

Parking

Parking Deck

Project Delivery The American of Architects

100 Project Research Study Results

Shift 5 –

Realigned Contractual Structures and Incentives

╋

Manufacturing-inspired Construction (including integrated supply chain) Report - McKinsey Global Institute - February 2017

Reinventing construction through a productivity revolution

By Filipe Barbosa, Jonathan Woetzel, Jan Mischke, Maria Joao Ribeirinho, Mukund Sridhar, Nick Bertram, and Stephanie Brown

2017 Report - McKinsey Global Institute

Project Delivery

<u>Principle</u>

Fixing the building production system (Shift 5) requires fixing the planning, design and management system (Shifts 1 thru 4)

Owners Need Architects to embrace the first four shifts

Project Delivery

Illustration **Two Rehabilitation Hospitals Two Different Owners Two Different Approaches**

Project Delivery

Rehabilitation Hospital A Problem: Project Not Feasible if Costs More than \$500,000 per bed

Rehabilitation Hospital B

Project Delivery

Project Delivery

Add Project 1		Enter Key Attributes About
To add a project, select a category and purpose for the building from t	he lists below.	the Project
Building Category		
HEALTHCARE (IN-PATIENT)	4	(Please Select)
Hospital and other In-patient Facilities Project Counts		✓ HEALTHCARE (IN-PATIENT)
Building Purpose		HEALTHCARE (AMBULATORY)
Hospital (Rehabilitation)	\$	HIGHER EDUCATION
Rehab Hospital with OT/PT/Cardiac Treatment Center		DATA CENTER
Program Readiness 70% More)	COMMERCIAL
Calibration Strength 60% More	ə	HOSPITALITY
Project Name		RESIDENTIAL
100 Bed Rehabilitation Hospital		INDUSTRIAL
State Metro Area		GOVERNMENT
	A	PARKING
Construction Start Year (YYYY) Month		PRIVATE ASSEMBLY/ACTIVITY
2021 May 🗘		SPECIAL PROJECTS
Total Elear Count Elears Below Main Elear		
Templating More		(Please Select)
Broad Selection of Rehabilitation Programs	\$	Hospital
		Hospital (Critical Access)
		✓ Hospital (Rehabilitation)
		Behavioral (In-patient) Care Center
The American Project Deliv Institute	ery	
of Architects an AIA Knowledge C	Community	

Functional Program ()

Select/Enter Depts and Functions (Owners Business Case)

Revisions considered "Actual or Target" instead of "Approximate"

Definitions		Confirm/Revise other			
Owner Type	cal/Public 🛛 🖯 Custom Franch	important Attributes			
Location Type O Dense Urban O Urban Suburban/Residential O Rural O Campus					
HVAC Generation Approach Unknown Prepackaged RTU (DX) 	Central Generation & Air H	anding Central Generation with Roof Top Air Har 	ndling		
Utility Connection with Central Air Hand	lling 🛛 🔍 Utility Connection wi	Standards			
Geothermal with Central Air Handling	Geothermal with Roof Top				
Unitized (Residential/Lodging) System	Not Applicable	Quality Classification			
Development Stage		🔵 Unknown 🛛 Economic Grade 🔍 Star	ndard (Medium) Grade 🛛 💿 Standard (High) Grade 💿 Premium (High) Design Grade		
Early Planning O Programming O Conceptual Design O Scher Iconic, Monumental Grade					
Procurement (Bought Out) Final Completion					
Scope Exclusions			LEED Gold LEED Platinum		
Sitework ■ Monumental Sign Communication Systems ■ S					
Window Coverings Appliances			Eacility Operational C Full Bedundancy		
Indirect Services					
	Direct Cost %	Seismic Design Class None SDC A SDC B SDC C SDC D/E			
General Conditions	8.00 %				
Permits, Insurance and Bonds	1.50 %	Security Provision			
Construction Fee	4.00 %				
Contingency	5.00 %	Is Hurricane Design			
Design (Architecture and Engineering)	 ✓ 8.00 % % 	le No e fes			
		Special Site Requirements O Unknown O Low O Average O Ab	ove Average 🛛 High 🔍 Not Appilcable		
The American	Project Deliver	Foundation Bearing Condition Unknown Ideal Bearing Conditions 	Medium Bearing Conditions O Poor Bearing Conditions O Not Applicable		
of Architects	an AIA Knowledge Comr	munity			

Project Set 1		ו	Done Reports - Copy		12:20 PN	
Space Distribution Patient Floors Food Service Core and Common	Gross Building Area 120,000 SF 1100,000 SF 100,000 SF 90,000 SF	24 mo 21 mo 18 mo 15 mo	Proje \$36,000,0 \$34,000,0 \$32,000,0 \$30,000,0	Comp Star	leted Baseline F ed Benchmark	Review and ing Study
	80,000 SF High: 113,155 SF Mean: 97,461 SF Low: 88,092 SF	12 mo High: 23.0 mo Mean: 17.5 mo Low: 14.6 mo	Set 1 - Baseline	Greater Ann Arbor, Micr climate zone CZ5a (Cool	Owner Type	Private
HEALTHCARE (IN-PATIENT)	/ Hospital (Rehabilitation) Edit		Floor Count Construction Start	2 total (0.0 below main May, 2021	This set can be used as a benchmark for other projects	
Program (click to toggle)			Construction	New Building / Convent	Benchmarking Select from the available list for results to be adjusted to the re Benchmarking is further described in Basis of Results. If you have results will default to the "Building Catalyst Baseline".	lative program, scope and/or cost results of a benchmark. ave not recorded or received a shared benchmark, your
Attributes (click to toggle)			Edit	NO	Filter (HEALTHCARE (IN-PATIENT)) Select a benchmark for your basis of results. (Metron Rehab Hospital / Final Results)	\$
Parameters (click to toggle)			Target Gross Building Area Target Construction Duration		Save Cancel	
Schedule (click to toggle)			Target Project Cost	Ļ	I/A Special Site Requirements	s Unknown
Concerne (chick to toggle)			Edit		Foundation Bearing Cond	ition Unknown
Cost (click to toggle)			Benchmark	//	Interior Renovation Stagin Existing MEP Services Re	g/Difficulty Scale Not Applicable trofit Scale Not Applicable
The Ame	rican Droject D)oliyory	The benchmark used by this This set is not available to be projects. Edit	set is: Building CATALYST used as a benchmark by o	er Building Addition Make-re Building Demolition	ady Scale Not Applicable Not Applicable
Institute of Archit	ects an AIA Knowle	edge Community				

of Architects

an **AIA** Knowledge Community

Rehabilitation Hospital B The Tragedy of the Lack of Knowledge

Project Delivery
Rehabilitation Hospital B

Project Delivery

Rehabilitation Hospital B Schematic Design Cost Model v. Estimate

Two Rehabilitation Hospitals

A: 20 Months (14,400 Hours) – No Cost Certainty

B: 1 Hour – High Cost Certainty

99.99% Time Reduction

Project Delivery

5 Major Shifts to Reinventing Construction

- 1 Front End, Knowledge-based BIM (Model, Measure & Manage)
- **2** Purpose-driven (AKA Owners Business Case) Planning and Execution
- **3** Simple Systems-driven Planning and Execution
- 4 Industry-wide Knowledge (Big Data) System
- **5** Realigned Contractual Structures and Incentives **+** Manufacturinginspired Construction

5 Opportunities for Architects and Builders

- 1 Front End, Knowledge-based BIM (Model, Measure & Manage)
- **2** Purpose-driven (AKA Owners Business Case) Planning and Execution
- **3** Simple Systems-driven Planning and Execution
- **4** Industry-wide Knowledge (Big Data) System
- 5 Realigned Contractual Structures and Incentives + Manufacturing-inspired Construction

- Higher Value for Owner 1.
- Reduced Effort and Time to 2. Deliver
- 3. More Spectacular Design Afforded
- 4. Significant Risk Reduction
- 5. Substantial Increase in Return on Effort

Architects

Welcome to the Knowledge Movement

Testimonials

BOLDT®

Jayme Couchene

Development Director "Building Catalyst is addicting"

"On multiple occasions, I've been asked if I was a medical planner"

Jourdan Trice

Cost Modeling and Technology Integration Manager

"How can I buy into this company?"

Ron Simoneau

VP Higher Education

"This is exactly what we need. This is fantastic."

The American F Institute ______ of Architects ______

Project Delivery

an **AIA** Knowledge Community

Scott Warren VP Preconstruction

"We have to move in this direction. Technology is the key to our future."