Learning from the patient's perspective: New worlds in Medical Illustration

Carrie Shaw, MS July 22, 2017

"How do you get a 24 year old medical student to understand what it is like to be someone 60 years older than themselves?"

Carrie Shaw, CEO MS, Biomedical Visualization 5 yrs+ public health educator

Thomas Leahy, Technology BS, Computer Science Human-Computer Interaction

Ryan Lebar, Creative BFA, Film & Theater Virtual Reality Filmmaker

Erin Washington, Curriculum MS, Information Science 10 yrs+ education technologist

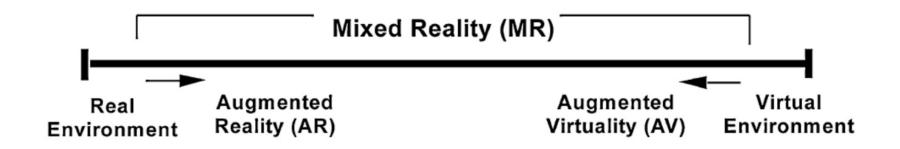
Select Scientific Advisors

Olusola Ajilore, MD, PhD

Geriatric Mental Health & Neuroscience Expert

Neelum Aggarwal, MD

William Hazzard, MD


ORUSH Sr. Population Health

Neurologist

XR: Virtual, Augmented, & Mixed Reality

Paul Milgram's Reality-Virtuality continuum

Not all VR is the same: Mobile VR

Google cardboard

Samsung Gear VR

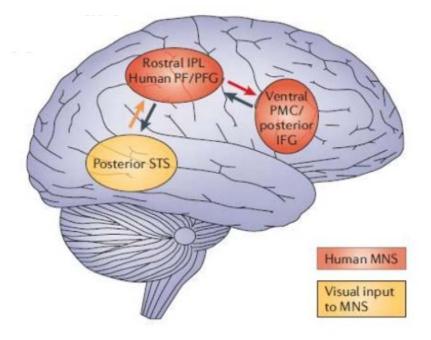
Google Daydream

Not all VR is the same: Desktop VR

- 1. Oculus Rift Facebook
- 2. HTC Vive
- 3. Playstation VR
- 4. Windows Mixed Reality Headset - Microsoft (Coming soon)
- 5. Daydream 2 HTC & Google (Coming Soon)

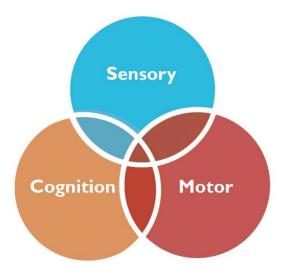
Strengths of VR: Active Learning

Strengths of VR: Complex assessment



Embodied Cognition

All of a person's abstract inferences are structured in an **image schema** – a correlation of an idea to a pattern of movement, orientation, or interaction of the body.


(Lakoff & Johnson 1980)

Embodied Cognition & Learning

Embodied learning marries the tacit schemas through which tasks are intuitively carried out with the analytical reasoning required to learn.

Interactions:

- Mind and body
- Thought and action
- Rational schemas and sensorimotor schemas

Embodied Learning

Impacts socioemotional learning with respect to increased...

- motivation to learn content
- understanding of concepts
- ability to self-identify with content & concepts

The 5D framework for XR design

- **1. Depth:** Quality & depth of content.
- 2. Sustainability: Feasibility of the XR world to be used over time.
- **3. Spread:** Ability for large numbers of people to use the XR world.
- **4. Shift:** Learners begin to think of the world as their own, rather than belonging to those who designed it.
- 5. Evolution: Iteratively redesigning the world based on assessment from learners.

Sawyer 2006

FIRST EMBODIED VR EXPERIENCE

The Alfred Lab

- Live-action 7 minute 360° film
- Computer-generated interactive objects
- 3D binaural sound

Who is Alfred?

- A 74 year old African-American patient
- Advanced macular degeneration
- High frequency hearing loss

Pre-production	Production	Post-production	Deployment
Project ideation session Script outline Script drafts 1 & 2 Final script Location scout Casting on location	2 day 12 hour shoot 6k resolution Monoscopic video Spatial audio sound recording 5 person crew Director Sound mixer 2 camera technicians	High resolution stitching Draft 1 & 2 Color grading Spatial sound design Game engine interaction	Embodied Labs application includes: Hardware checks Easy user onboarding guide User Metrics

Producer

Scene	Learning Goals			
Scene I: Happy Birthday song	 To introduce the learner to being Alfred. To expose the learner to audiovisual perceptive changes. 			
Scene 2: Day Dream	 To understand how to use the leap motion hand controls. To contrast the audiovisual perceptive deficits present in scene I but absent in scene 2. 			
Scene 3: Wine spill	• To learn about family interactions that occur outside of the clinic.			
Scene 4: Waiting room	 To feel what a clinic environment is like while having Alfred's audiovisual perceptive deficits. 			
Scene 5: Taking the cognitive test	 To learn from the patient's perspective how a geriatrician introduces a cognitive test. To feel what it is like to have to compensate for a disability. 			
Scene 6: Follow up with doctor	 To understand audiovisual perceptive changes may be misdiagnosed as cognitive impairment. To contrast hearing loss from previous scenes with normal hearing once the hearing device has been accepted by the learner. 			
Key: Cognitive Affective Procedural				

Principles of design & Alfred

- Scaffolded learning experience
- Learning goals increase in complexity over time
- Learning goals: cognitive, affective, and procedural

An Embodied Lab has 3 stages:

- 1. **PREPARE** Pre-assessment, 360° video documentaries
- 2. **EMBODY** | Embodied 1st person VR patient experience
- 3. **REFLECT** | Post-assessment, Debrief & Reflect

PRODUCT

Subscription-based software made up of a growing library of patient experience labs.

	7 Constantions	- U X
	E mender	
	VR Experiences Curricul	um Documents
	INSTALLED (Z)	
	Alfred Macutar degeneration & hearing tore.	Open
	Betty Atministry	Open
	ADDITONAL EXPERIENCES (1)	
8	Chad	Download
	_	
	O	

VIRTUAL REALITY Embodied experiences 360 films

F	
.F	Lui
 _	
 -	I ———

CURRICULUM Customized Assessment Case presentation Facilitator guide

LABS IN THE PIPELINE

D

ELDERLY	 Vision Loss I Alfred Hearing Loss I Alfred Cancer Alzheimer's Parkinson's End of Life Decisions 	DIVERSITY	 C Literacy C English as a 2nd Language O Immigrant O Trans-Health O Obesity O Low SES Health
LEARNING DISABILITY	 ADD Dyslexia Depression Anxiety 	DISEASES	 Cancer Stroke Multiple Sclerosis Diabetes II
PSYCH	 Anorexia Psychosis 	CHILDREN	 Y Type I Diabetes Learning Disabilities
DEVELOPMENTAL IMPAIRMENTS	 Autism Down's Cerebral Palsy 	MEN/WOMEN'S HEALTH	O High Risk Pregnancy

Challenges

- 1. Content is fragmented.
- 2. Medical VR = many types
- 3. Platforms today: myriad of content, no one customer type or end user.
- 4. VR healthcare soft-skills training content is minimal
- 5. Content creation is expensive
- 6. Meaningful content is hard to create.
- 7. Quality standards do not exist yet.
- 8. Platforms for healthcare have a unique set of needs.
- 9. The hardware is changing rapidly.

Platforms cannot succeed without a critical mass of desirable content.

Select Customers

UNIVERSITY OF ILLINOIS AT CHICAGO

+ EDSiM CHALLENGE

Embodied Labs is in the finals!

Ω.

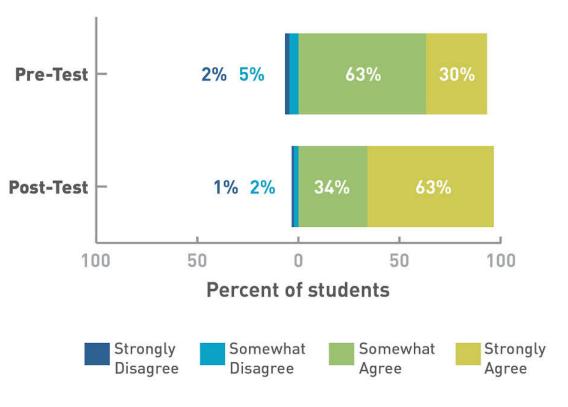
"This app...will change how we treat patients by providing an immersive experience that creates emotional intelligence and ultimately more compassionate care." [Forbes]

> -Dr. Leslie Saxon, Executive Director USC Center for Body Computing

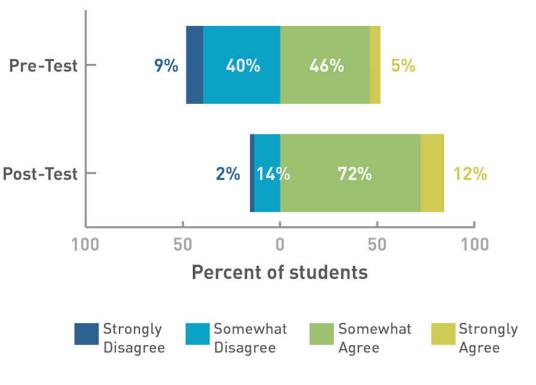
U of IL Chicago College of Medicine, Fall 2016

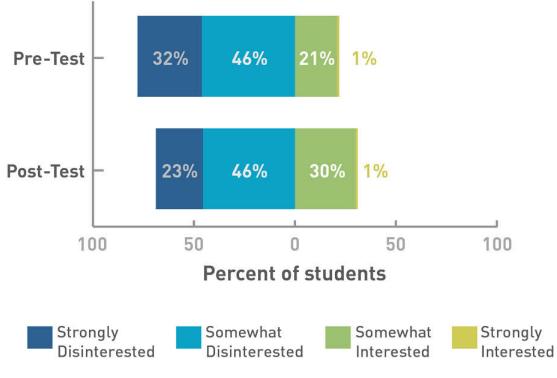
EVOLUTION REVOLUTION

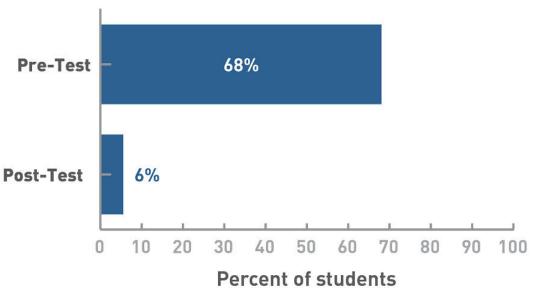
Body perception augmentation


- 1. Hands as controller
- 2. Vision & Hearing Impairments
- 3. Storytelling: race, age, gender, interactive elements

SUMMER LEADERSHIP SUMMIT 2017 EVOLUTION REVOLUTION


AGREE/DISAGREE: "Embodying my patient in VR helps me learn concepts important to my career."


AGREE/DISAGREE: "I understand the perspective of an elderly patient."


Interest in pursuing a geriatrics specialty

Use of stereotypical words to describe older adults

Common stereotypical words used: old, frail, grandparent, white hair, nursing home, sick, wise, respect, slow

Reactions

- "What's wrong with this headset?!"
- "Can you turn up the volume?"
- Surprise & frustration at struggle to complete cognitive test
- Sensory vs. cognitive impairment
- Posture changes

Outcomes

- Motivation to pursue a career in aging
- Assess audiovisual status when diagnosing cognitive impairment
- "This was the best 6 minutes I spent in our entire geriatrics unit!"
- Unanimous agreement for more simulations like this one

EMBODIED PATIENT EXPERIENCES

- The Alfred Lab Macular degeneration & high frequency hearing loss
- The Betty Lab (Arriving August 2017) Alzheimer's disease

DOCUMENTARY SERIES

- Macular Degeneration (Arriving May 2017)
- Alzheimer's Disease (Arriving June 2017)

Partner content will be available soon.

Forbes

"This app...will change how we treat patients by providing an immersive experience that creates emotional intelligence and ultimately more compassionate care."

- Dr. Leslie Saxon, Executive Director

University of Southern California Center for Body Computing

carrie@embodiedlabs.com Twitter: @embodiedlabs

References

Ahn, S.J. "Embodied Experiences in Immersive Virtual Environments: Effects on Pro-Environmental Attitude and Behavior," PhD, Stanford University, 2011.

Abrahamson, D., & Lindgren, R. (2014). Embodiment and embodied design. In R. K. Sawyer (Ed.), *The Cambridge handbook of the learning sciences* (2nd Edition). Cambridge, MA: Cambridge University Press.

Bransford, J. D., Brown, A. L., & Cocking, R. (eds., 2000). How People Learn: Brain, Mind, Experience, and School (pp. 3 - 27). Washington, DC: National Research Council.

Dede, C. (2009). Immersive interfaces for engagement and learning. Science 323(5910), 66-69.

Gallagher, S. (2005). *How the body shapes the mind*. Oxford University Press, New York (2005).

Lindgren, R., Johnson, M., (2013). *Emboldened by Embodiment: Six Precepts for Research on Embodied Learning and Mixed Reality*. Educational Researcher, 42(8): 445–452. doi: 10.3102/0013189X13511661

Lindgren, R., Tscholl, M., and Moshell, J.M. (2013). *MEteor: Developing Physics Concepts Through Body-Based Interaction With A Mixed Reality Simulation*. doi:10.1119/perc.2013.pr.042

References (cont'd)

Lindgren, R., Tscholl, M., Wang, S., Johnson, E. (2015). Enhancing learning and engagement through embodied interaction within a mixed reality simulation. Manuscript in preparation.

Lueg, C. P. (2015). The Missing Link: Information Behavior Research and Its Estranged Relationship With Embodiment. *Journal of The Association for Information Science & Technology*, 66(12), 2704-2707. doi:10.1002/asi.23441

Robson, D. (2011). Your clever body. New Scientist, 212(2834), 34-38.

Shumaker, R. (Eds.). (2013). Proceedings from VAMR '13: 5th International Conference Held as a Part of HCI International 2013, Las Vegas, Nevada: Springer.

Sawyer, R. K. (Ed.). (2006). Cambridge handbook of the learning sciences. New York: Cambridge University Press

Yee, N., & Bailenson, J. N. (2006). Walk a mile in digital shoes: The impact of embodied perspective-taking on the reduction of negative stereotyping in immersive virtual environments. Proceedings of PRESENCE 2006: The 9th Annual International Workshop on Presence. August 24-26, Cleveland, Ohio, USA.