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Evolution of Tools and Technologies

Drawing Connected BIM
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Evolution of Connected BIM
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Process Opportunities of Technology

Digital

1 precision,
optimization,

simulation

Digital simulation, big data and analysis allows architects to develop a design with
higher levels of precision and insight and understand the technical implications of
design decisions a priori.

Information
2 coordination
and control

3 Solving,
selecting

Integrated

4 lifecycle
information

Intention to

5 execution,
digital

making




2.1.2 Analytical formulae

Problem to be solved

Example formula

Compute moment in a
simple beam, uniformly
loaded

M (at center) . . ... .. = 3

|
JIddddddddldddd

a T

Flow resistance of air
through a small opening
in an exterior wall

S(V)=—b2— .y
0,845- A%

where

Siis the flow resistance [Pa- m3/s]
pis the density of the air [kg/m3]

Alis the area of the hole [kg/m?]

Required capacity of
rainwater downpipes
and gutters

Qh=(axi)x(BxF)
a = the reduction factor for the rain intensity for flat roofs
a = 0.60 flat roof with ballast of gravel
a = 0.75 for the other flat roofs
As flat roofs discharge the water at a slower pace, for all other cases (therefore
all pitched roofs)
appliesa=1,
i = rain intensity and is 1.8 (litre/minute)/m?
B = reduction factor for the roof width is determined by the pitch roof
F = surface of the roof

5 American Forest and Paper Associatation, “Beam Design Formulas with Shear and Moment Diagrams,”
http://www.awc.org/pdf/codes-standards/publications/design-aids/AWC-DA6-BeamFormulas-0710.pdf.

o

Axel Berge, Analysis of Methods to Calculate Air Infiltration for Use in Energy Calculations, Thesis, Chalmers

University, 2011, http://publications.lib.chalmers.se/records/fulltext/147421.pdf.

and-roof-gutters.

Nedzink Company, “Determining the required capacity of rainwater downpipes and roof gutters,” http://www.nedzink.
com/en/info-and-advice/roof-drainage-system/112/determining-the-required-capacity-of-rainwater-downpipes-
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Process Opportunities of Technology

Digital

1 precision,
optimization,

simulation

Digital simulation, big data and analysis allows architects to develop a design with
higher levels of precision and insight and understand the technical implications of
design decisions a priori.

Information
2 coordination
and control

Designing a building means coordinating both the physical artifact and the
information flows necessary to generate it, including both geometry and metadata.

3 Solving,
selecting

Integrated

4 lifecycle
information

Intention to

5 execution,
digital

making




1 - Introduction

2 — Agency

2.1 The Digital Transformation of Design

2.2 Defining Design Intent: Depiction,
Precision and Generation

2.3 The Evolution of Responsible Control and
Professional Care

2.4 Preparing Digital Designers

2.5 Building Performance Design

3 — Methodology

3.1 Procedures, Process and Outcomes

3.2 - Information Coherence

3.3 Designing Design: Optimizing, Solving,
Selecting

3.4 Building Logic and Design Insight

3.5 Design Demands of Digital Making

4 — Value

4.1 Creating New Value Through Design

4.2 Producing Design Process

4.3 Calibrating Design Values

4.4 New Values in The Systems Of Delivery

Conclusion

3.2 - Is the creation and control of information systems by architects necessary for the

design and construction of buildings?

3.2.6 Model coordination timeline for an airport project

2.3.3 The constellation of applications in use by SOM, 2007
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Process Opportunities of Technology

oIzl Digital simulation, big data and analysis allows architects to develop a design with
1 gs:ﬁ::ggl on higher levels of precision and insight and understand the technical implications of
simulation | 9€sign decisions a priori.
2 Lrgg:;?zggzn Designing a building means coordinating both the physical artifact and the
and control | information flows necessary to generate it, including both geometry and metadata.
Solvi Digital simulation and generative design, in combination, allows architects to more
3 S:| ;’ clz?igr];g thoroughly explore options systematically, understand the results, and choose better
solutions.
Integrated
4 lifecycle
information
Intention to
5 execution,
digital
making




1 - Introduction 3.3 - How do digital strategies for problem definition, generation, evaluation and

optimization affect the architect’s process and goals?
2 — Agency

2.1 The Digital Transformation of Design

2.2 Defining Design Intent: Depiction,
Precision and Generation

2.3 The Evolution of Responsible Control and
Professional Care

=7
b

2.4 Preparing Digital Designers

oy 0y P
2.5 Building Performance Design £ 7 """
3 - Methodology ;ﬁ ?S
1@ it
3.1 Procedures, Process and Outcomes ,L:£ .,’:«E_
3.2 - Information Coherence m m
3.3 Designing Design: Optimizing, Solving, - ﬂ
Selecting : )
(4 L=
3.4 Building Logic and Design Insight i o]

3.5 Design Demands of Digital Making

4 — Value

4.1 Creating New Value Through Design

4.2 Producing Design Process

4.3 Calibrating Design Values

4.4 New Values in The Systems Of Delivery

Conclusion




Inertialiboad

Fig. 19 Comparison of aerodynamic, inertial, and cabin pressure loads.

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.459.9447 &rep=rep1&type=pdf



Process Opportunities of Technology

Digital
1 precision,
optimization,

Digital simulation, big data and analysis allows architects to develop a design with
higher levels of precision and insight and understand the technical implications of
design decisions a priori.

simulation
2 Lrgg:;?zgggn Designing a building means coordinating both the physical artifact and the
and control information flows necessary to generate it, including both geometry and metadata.
Solvi Digital simulation and generative design, in combination, allows architects to more
3 s;:clz?i?lg thoroughly explore options systematically, understand the results, and choose better
solutions.
Integrated The information that is the basis for design can support improved construction
4 lifecycle process and building operation, and creates a virtuous cycle of data that can be used
information | to puild insight and improve results.
Intention to
5 execution,
digital

making




3.4 - Is architectural design representation obliged to support and integrate into post-design

activities such as construction and building operation, and if so, how does that affect design

generation?
Operating project data 3 : Other designs II I
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Process Opportunities of Technology

Digit.al_ Digital simulation, big data and analysis allows architects to develop a design with

g;i?rl:izqi’on higher levels of precision and insight and understand the technical implications of

simulation | design decisions a priori.

:gg::;zgg:n Designing a building means coordinating both the physical artifact and the

and control information flows necessary to generate it, including both geometry and metadata.

Solvi Digital simulation and generative design, in combination, allows architects to more

S;:(I:?i?l,g thoroughly explore options systematically, understand the results, and choose better
solutions.

Integrated The information that is the basis for design can support improved construction

lifecycle process and building operation, and creates a virtuous cycle of data that can be used

information | to puild insight and improve results.

Intentionto | pioital design information can drive automated construction process and logic,

execution, .. . . . .

digital optimize means and methods and the resulting algorithms are instructive to

making

developing and optimizing design ideas.




2.1.6 Technology categories and their evolution: BIM > Machine Learning

Technology Category In the era of BIM modeling In the era of machine learning
Representation Parametric models of geometry and Artificial intelligence-informed design
metadata through interlinked digital models
Analysis and Simulation Digital analytical models tied to scripts that Big data-based neural networks that predict
test and choose results complex outcomes
Realization Model-based simulation of construction Information originating from the design
yielding build-ready data process drives self-learning automated

machinery on the project site.

Collaboration Web-based, social-media-enabled real-time  Real-time interaction enhanced by virtual
connection and data exchange. and augmented reality supplemented with
predictive collaboration through Al.

See also 2.14, p. 24
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Low

Mitigate

Make fewer mistakes as
individual participants

Manage

Anticipate and reduce
manageable risks

Embrace

Make projects more
successful

Risk

High
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) outcomes
=
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Increasing project value

4.3.2 Values hierachy

Implications for the architect’s process

I
influence

Transactional

Implications for the architect'’s results

improved social conditions
and advancing culture

improved performance of
the final asset

improved construction
means and methods

= improved efficiency



Discipline optimization to
smooth delivery

Inter-disciplinary
delivery optimization

4.3.2 Values hierachy

Clients A
and H R N
Users [14s A==
Builders
Budget conformance
Schedule
Built quality
Program conformance Systems to spec
. Design schedule Durabi
Designers

Design quality

y

Transactional

performance Executional performance

Project operational
optimization

Project performativity
optimization

Project value

Employee satisfaction
Higher test scores
Healthier patients

Lower infection rates

Operational performance | Aspirational Performance




Innovation (Leslie King, Esq.)

Business judgment rule? Contract for it?

Shareholders challenging the wisdom of a business decision taken by management must
overcome the business judgment rule. . . .. For efficiency reasons, corporate decision makers
should be permitted to act decisively and with relative freedom from a judge's or jury's
subsequent second questioning. It is desirable to encourage directors and officers to enter

new markets, develop new products, innovate, and take other business risks.” 1 AL.l,
Principles of Corporate Governance (1994) § 4.01(c) comment, p. 174



Aspiration - Operation

A

Intention

o

C

Execution

2.1.5 The evolution of project delivery models, 1970-2020

70s 80s

Decade

Economic | High Interest Rates
context High Energy Costs

Project Design
delivery Bid
model Build

(o}

A C

Evolution
of design
techno-
logy

90s 00s 10s

Worldwide
Downturn + Early
Sustainabililty

Liability Crisis

Savings + Loan + Interconnectivity

20s

Digital Design Data | Digital Fabrication
+ Big Data

Fast Track Design Build Integrated Design + Construction /
+ + Building Lifecycle
Original CM Flavored CM
Measured Performance + Outcomes
(o}
o (o] o
C
A CM D B D B
A

Building Information Modeling
Objects
Computer-Aided Drafting

Layered Production

Tracing Paper

O Owner

A Architect

CM Construction
Manager

C Constructor D Designer

Connected Systems

B Builder



A c (o)

Execution Operation

Intention

Design begins

Permit issued

Value

Occupancy

Agency of the Architect

Project value to Owner

Need punchlist!

Construction starts

C Initiation
Time Statute of limitation runs




1.5%
Precentage of construction cost 1.9%
not to exceed fixed amount Fee per square foot

10.5%
Percentage of
construction cost

Firm profit margins, based on earnings before interest, bonus and taxes

20.4%
361% \ Hourly rate (with or without Under 10% Weak operating margin
Stipulated sum (fixed fee) agreed maximum)
\ / 10%-15% Typical for most design firms
15%-20% High margin firm, above average
20-25% Top performing firm, unusual margins
28.7%
Professional fee plus Above 25% Very rare, extraordinary performer

reimbursable expenses

Measurement 2 Simulation = Prediction
= Qutcome-based Delivery



“We have to show that good Ideb
core mission of our partner. It is! quantifiable:

o

reducing infections, making rec<1very times faster,

and increasing staff retention.” 1)

AR V) b =
Alan Ricks, Pa
MASS Desit

Jnterview/fhdYale'School of Architecture CONSTRUCTS Spr

MASS Design Proposal for Haiti Hospital
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