

Design for Aging Knowledge Community

The mission of the AIA **Design for Aging** (DFA) Knowledge Community is to foster design innovation and disseminate knowledge necessary to enhance the built environment and quality of life for an aging society.

Continuing education credits

Earn 1 AIA LU/HSW

This program is registered with the AIA/CES for continuing professional education. As such, it does not include content that may be deemed or construed to constitute approval, sponsorship or endorsement by AIA of any method, product, service, enterprise or organization.

The statements expressed by speakers, panelists, and other participants reflect their own views and do not necessarily reflect the views or positions of The American Institute of Architects, or of AIA components, or those of their respective officers, directors, members, employees, or other organizations, groups or individuals associated with them.

Copyright notice

This presentation is protected by US and International Copyright laws. Reproduction, distribution, display and use of the presentation without written permission of the speaker is prohibited.

© The American Institute of Architects 2022

Questions?

Submit your questions through the Q&A pod at the bottom of your screen.

Content-related questions will be answered during the Q&A portion as time allows. Any questions not answered during Q&A, will be answered and posted online within two (2) weeks.

Tech support questions will be answered by AIA staff.

LEARNING OBJECTIVES

- 1. Participants will be able to identify how the 2022 California Energy Code Updates will impact RCFE design and construction.
- 2. Learn how all-electric infrastructure requirements will impact commercial kitchens, laundries, and typical amenities in California.
- 3. Participants will learn strategies for providing energy resilience that is independent of the grid.
- 4. Learn how decarbonizing building infrastructure can result in longterm energy and cost savings.

DECARB + THE RCFE

AGENDA

- A. Evolving Policy Landscape
- B. Technology of Rapid Electrification
 - Operational Cost
- C. CA Code Cycle Impacts to RCFEs
 - No more commercial classification
 - Commercial Kitchens & Laundries
 - Amenities in an All-Electric Development
 - EV Charging
- D. Using Renewables to Increase Resilience and Drive your Proforma
- E. Resources

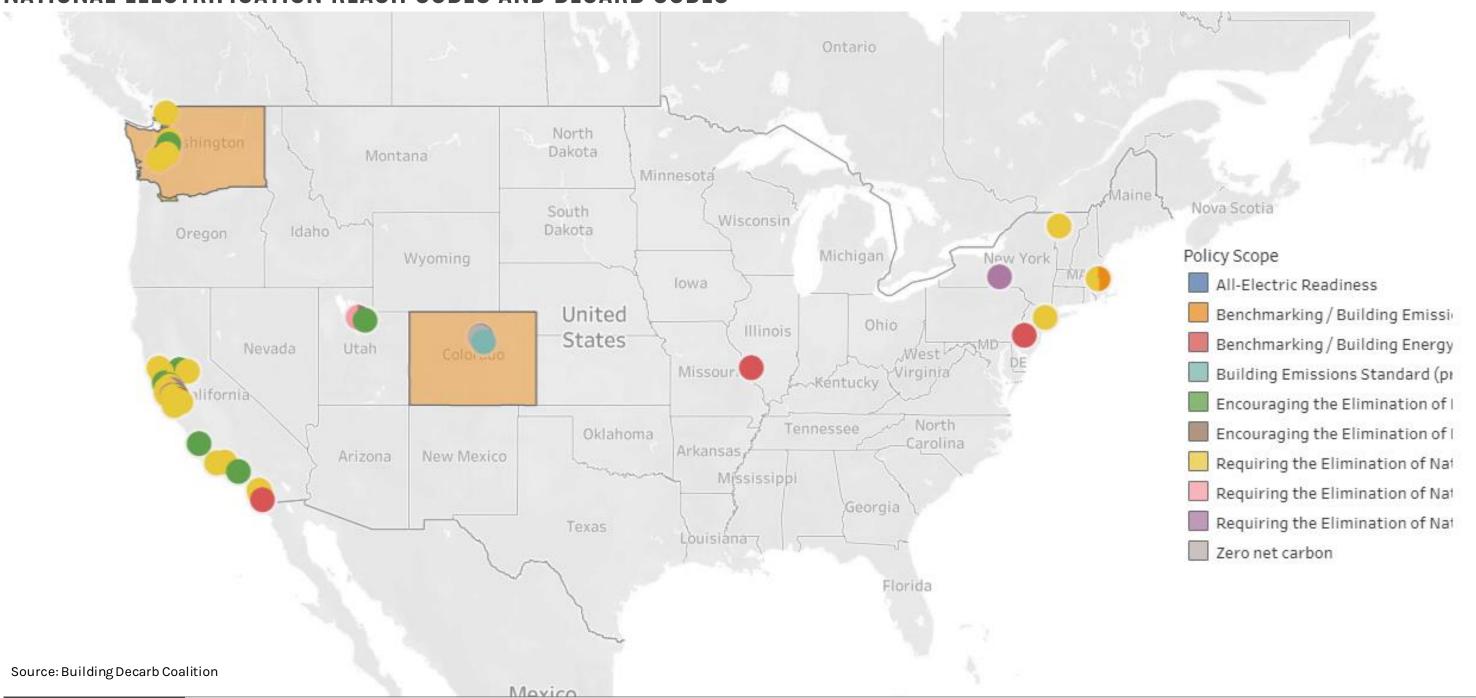
DECARB + THE RCFE

STET SANBORN

Principal,

Engineering

Discipliine Leader

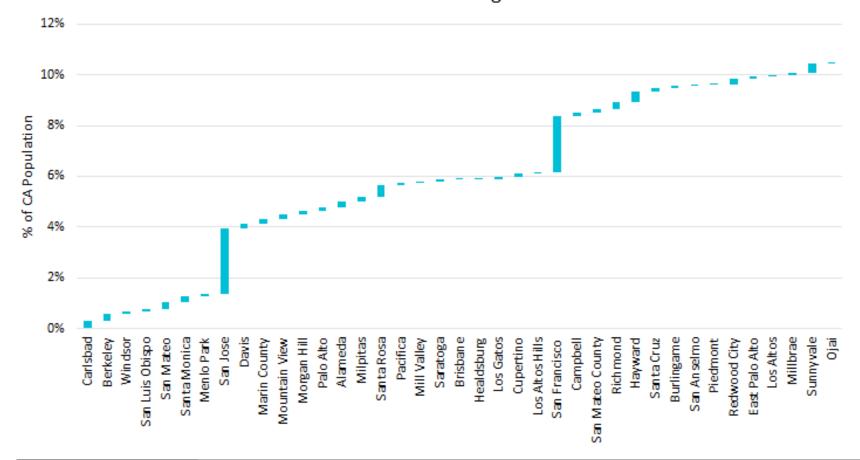


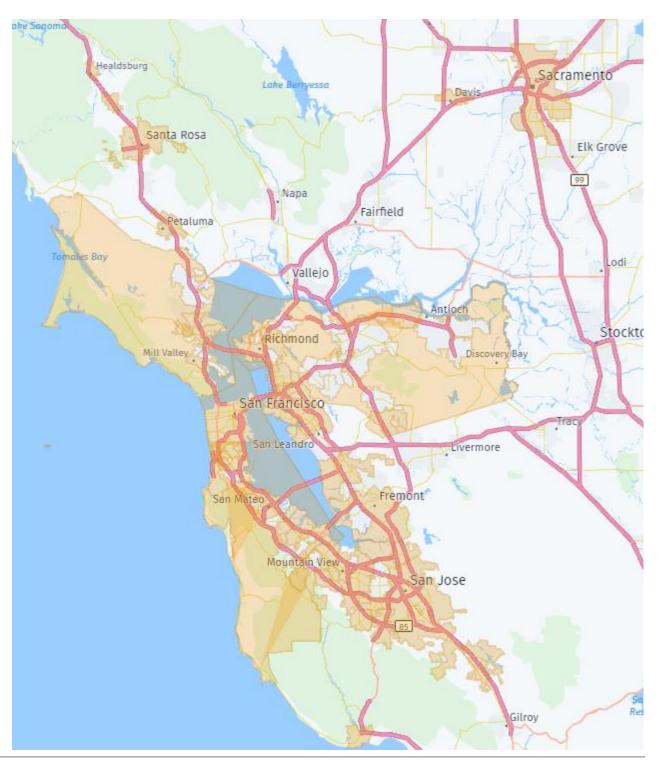
ALEXIS BURCK
Principal, Senior
Living Studio Leader

A. EVOLVING POLICY LANDSCAPE

CITY AND STATE POLICY DRIVERS

NATIONAL ELECTRIFICATION REACH CODES AND DECARB CODES




REGULATORY CONDITIONS

NEW CONSTRUCTION → BAY AREA AGGRESSIVELY DRIVING ELECTRIFICATION

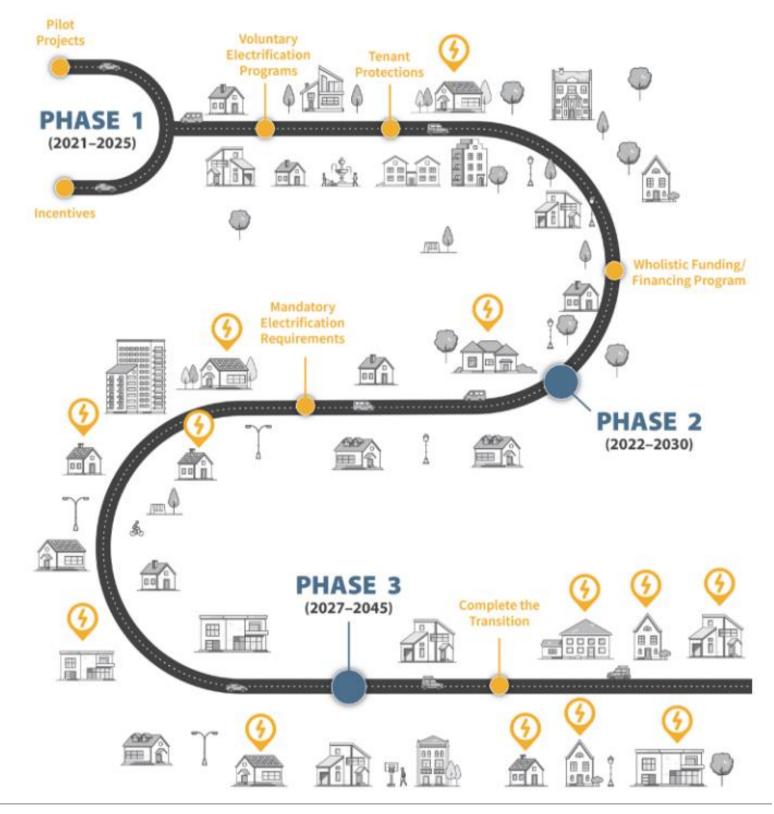
50 California Cities with All-Electric Codes or Reach Codes

% of California Population Living in a Place with a Zero Emission Building Code

LOCAL POLICY DRIVERS

CITY OF BERKELEY - ELECTRIFICATION RETROFIT PLANNING

Phase 1


 Focuses on expanding and verifying the identified cost effectiveness and equity impacts implementing foundational programs and building community capacity.

Phase 2

 Increases the stringency of the policies and begins to introduce mandatory measures, once sufficient supports are in place.

Phase 3

• Policies finalize the move toward all-electric buildings through mandatory measures.

BUILDING DECARB COALITION

A POWERFUL COALITION OF CITY GOVERNMENTS, UTILITIES, NGO'S, NON-PROFITS, DESIGNERS, ENGINEERS, MANUFACTURERS AND MANY MORE

http://www.buildingdecarb.org/resources.html

FOR DESIGN TEAMS

RESEARCH

FOR LOCAL GOVERNMENTS

350

SGV

Alter

Smith

BRIGHT POWER

BuildIt'

EGROMAPPOLD ENGINEERING

CALIFORNIA

enwave

CLEAN ENERGY

1 4 4

Steers & Steam Architects

>> slipstream

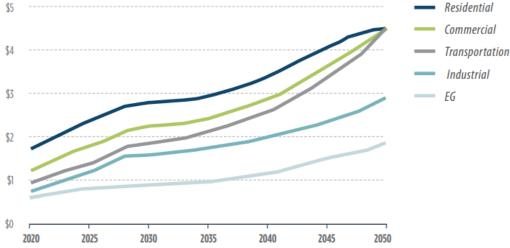
SUSTAINABLE TAYLOR

TerraVerde

The Climate Results Project

@ codecycle





REGULATORY CONDITIONS

MITIGATING FUTURE RISKS AND UNCERTAINTY

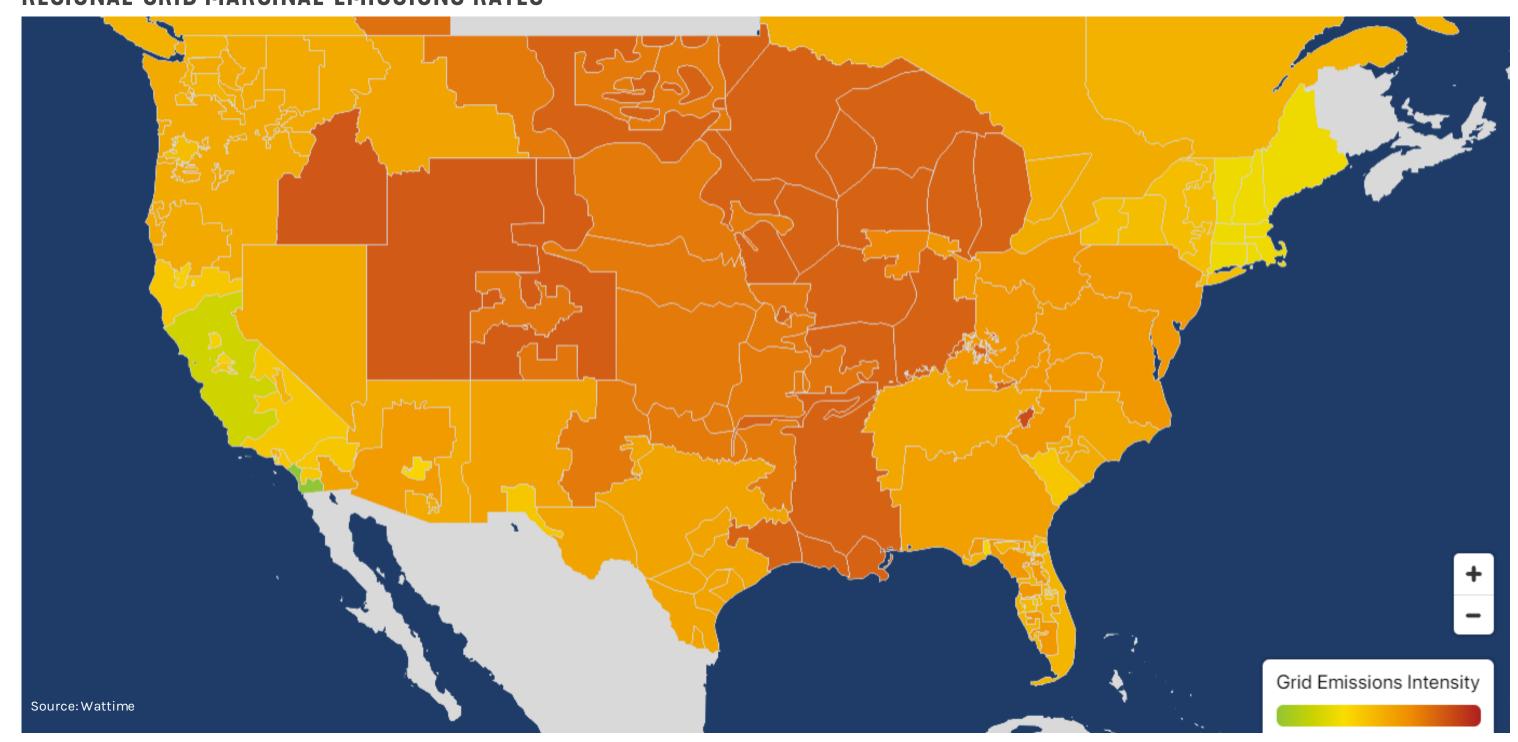
FIGURE 9. Projected Gas Rates with 50% Reduction in Gas System Expenditures, Accelerated Depreciation, and Change in Cost Allocation Source: E3

Under Nichols' leadership, the board has helped set national standards on tailpipe emissions, which dictate gas mileage, and battled with Washington as the Trump administration tried to roll back those rules.

Liane Randolph (California Public Utilities Commission)

Randolph is a current commissioner of the California Public Utilities Commission, which regulates electric, natural gas and water utilities, telecommunications and transportation companies including Uber and Lyft.

She previously worked in the California Natural Resources Agency and chaired the Fair Political Practices Commission,


which oversees and enforces California's campaign finance and political ethics laws.

At the air board, she'll be charged with overseeing some of California's ambitious plans to cut down on greenhouse gas emissions and regulate air pollution.

Those goals include achieving net-zero carbon emissions by 2045 and halting the sale of new gas-powered passenger vehicles by 2035.

UNDERSTANDING YOUR REGIONAL GRID

REGIONAL GRID MARGINAL EMISSIONS RATES

B. TECHNOLOGY OF RAPID ELECTRIFICATION

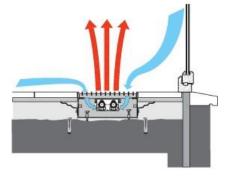

THE FUTURE OF HOUSING

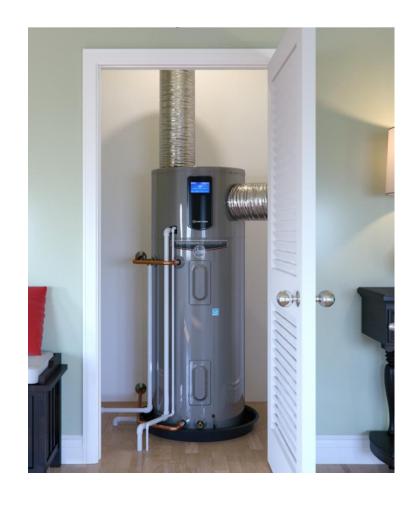
MEP SYSTEMS FOR ALL-ELECTRIC DESIGN

https://www.ashrae.org/technical-resources/aedgs

Site EUI Targets with End-Use Breakdown

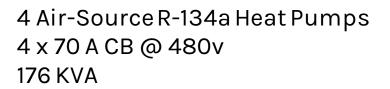
HEATING AND COOLING: MINI-SPLIT AND VRF HEAT PUMPS


HEATING AND COOLING: AIR TO WATER HEAT PUMPS



DOMESTIC HOT WATER

DOMESTIC HOT WATER: WHY CO2 HEAT PUMPS MAY BE YOUR BEST FRIEND


- 100x 1-Bedroom
- 100x 2-Bedroom
- ASPE
 - Peak: 1,433 gph for 3 hours
 - Off-peak: 158 gph for 8 hours

DOMESTIC HOT WATER: WHY CO2 HEAT PUMPS MAY BE YOUR BEST FRIEND

- 100x 1-Bedroom
- 100x 2-Bedroom
- ASPE
 - Peak: 1,433 gph for 3 hours
 - Off-peak: 158 gph for 8 hours

2,750 Gallons of Storage (@ 140F)

DOMESTIC HOT WATER: WHY CO2 HEAT PUMPS MAY BE YOUR BEST FRIEND

- 100x 1-Bedroom
- 100x 2-Bedroom
- ASPE
 - Peak: 1,433 gph for 3 hours
 - Off-peak: 158 gph for 8 hours

2 x CO2 Heat (R744) 2x 125A CB at 480v 138KVA

1,500 Gallons of Storage (@ 180F)

DOMESTIC HOT WATER: WHY POOP MAY BE YOUR BESTEST FRIEND

- 100x 1-Bedroom
- 100x 2-Bedroom
- ASPE
 - Peak: 1,433 gph for 3 hours
 - Off-peak: 158 gph for 8 hours

2 x PIRANHA T15 HC Waste Heat Recovery Heat Pump (R-513a) 2x 110A CB @ 460v 88 kVA 2,750 Gallons of Storage (@ 140F) + ~2,250 Gal Waste Storage Below Grade

OPERATING COST: WHY YOUR COP MATTERS

- 100x 1-Bedroom
- 100x 2-Bedroom
- ASPE
 - Peak: 1,433 gph for 3 hours
 - Off-peak: 158 gph for 8 hours

	<u>Fossil Gas Boiler</u>	Heat Pump		
\$/Therm	\$1.62	N/A		
\$/kWh(EQ)	\$0.06	\$0.16		

OPERATING COST: WHY YOUR COP MATTERS

- 100x 1-Bedroom
- 100x 2-Bedroom
- ASPE
 - Peak: 1,433 gph for 3 hours
 - Off-peak: 158 gph for 8 hours

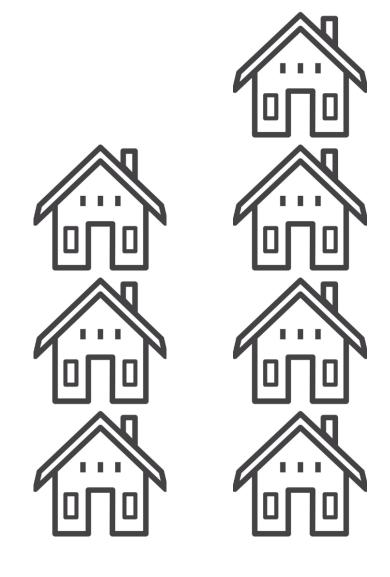
	Fossil Gas Boiler	Heat Pump			
\$/Therm \$/kWh(EQ)	\$1.62 \$0.06	N/A \$0.16			
Efficiency	0.95	2.5 → 4.5 COP			

OPERATING COST: WHY YOUR COP MATTERS

- 100x 1-Bedroom
- 100x 2-Bedroom
- ASPE
 - Peak: 1,433 gph for 3 hours
 - Off-peak: 158 gph for 8 hours

	Fossil Gas Boiler	Heat Pump					
\$/Therm \$/kWh(EQ)	\$1.62 \$0.06	N/A \$0.16					
Efficiency	0.95	2.5 → 4.5 COP					
Single Day Cost	\$119.10/Day	\$102.45/Day					
	Bay Area Cost Parity ~ COP 2.7 Chicago Cost Parity ~ COP 3.0 Denver Cost Parity ~ COP 3.4						

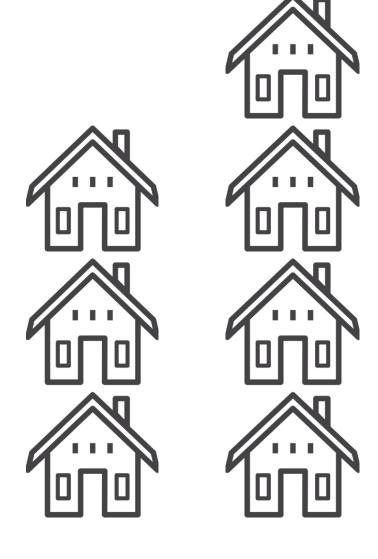
C. IMPACTS TO RCFES


UPCOMING CALIFORNIA CODE CYCLE

ENERGY CODE CHANGES

The California Energy Commission (CEC) estimates that over 30 years the 2022 Energy Code will provide \$1.5 billion in consumer benefits and reduce 10 million metric tons of GHGs – equivalent to taking nearly 2.2 million cars off the road for a year.

ENERGY CODE CHANGES


BUILDING RECLASSIFICATION

2019:

RESIDENTIAL

COMMERCIAL

2022: RESIDENTIAL

RESIDENTIAL

ENERGY CODE CHANGES

BUILDING RECLASSIFICATION

Table of Contents • Why Did the Energy Code Change? • Building Requirements • Performance • Envelope • Mechanical • Lighting and Electrical • PV & Battery Storage • For More Information

Where to Find Multifamily Building Requirements in the 2022 Energy Code

One of the largest changes to the structure of the 2022 Energy Code is that the Energy Code requirements for all multifamily buildings have been moved into their own subchapters, rather than being combined with single-family residential or nonresidential building types.

In past Energy Code cycles, the requirements for multifamily buildings with three or fewer habitable stories were grouped together with single-family residences and duplexes in the category of "low-rise residential," while multifamily buildings with four or more habitable stories were considered "high-rise residential," and their Energy Code requirements were part of the nonresidential standards. The 2022 Energy Code still has some distinctions between multifamily buildings with three or fewer stories versus four or more stories, but the new Energy Code structure makes it easier to find all multifamily requirements.

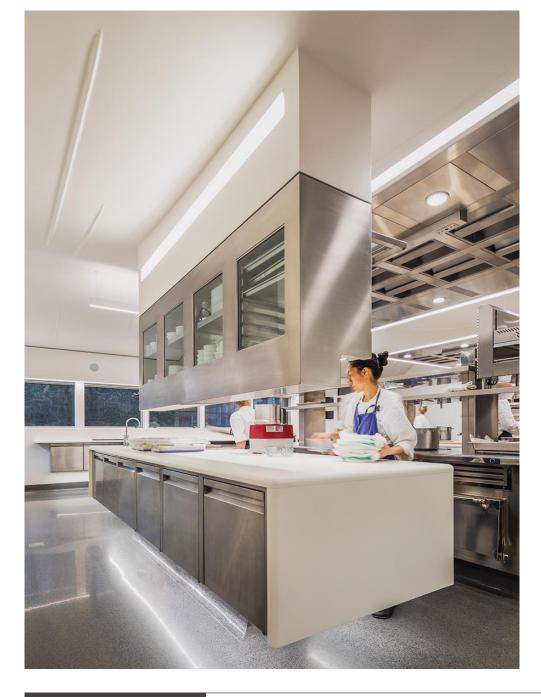
2022 Energy Code sections that apply to multifamily buildings are listed in Table 1.

	Subchapter	Requirements				
\$	Subchapter 2	All Occupancies: Mandatory Requirements for the Manufacture, Construction and Installation of Systems, Equipment and Building Components				
		§§110.0-110.10: Mandatory measures that may apply to all occupancy types depending on the equipment types and systems proposed				
		The structure of Subchapter 2 of the Energy Code remains essentially the same as in past code cycles.				
\$	Subchapter 10	Multifamily Buildings: Mandatory Requirements				
•		§§160.0-160.9: Mandatory requirements for dwelling units and common use areas in multifamil buildings				
		§160.0 General				
		§160.1 Mandatory Requirements for Building Envelopes				
		§160.2 Mandatory Requirements for Ventilation and Indoor Air Quality				
		§160.3 Mandatory Requirements for Space Conditioning Systems in Multifamily Buildings				
		§160.4 Mandatory Requirements for Water Heating Systems				
		§160.5 Mandatory Lighting Requirements for Indoor and Outdoor Spaces				
		§160.6 Mandatory Requirements for Electric Power Distribution System				
		§160.7 Mandatory Requirements for Covered Process				
		§160.8 Mandatory Requirements for Solar Ready Buildings				
		§160.9 Mandatory Requirements for Electric Ready Buildings				
P _X	Subchapter 11	Multifamily Buildings: Performance and Prescriptive Compliance Approaches				
PX		§170.0 General				
512		§170.1 Performance Approach				
-		§170.2 Prescriptive Approach				
\$	Subchapter 12	Multifamily Buildings: Additions, Alterations and Repairs to Existing Multifamily Buildings				
P _K		§180.0 General				
Px		§180.1 Additions				
50		§180.2 Alterations				
áic.		§180.3 Repairs				
		§180.4 Whole Building				

Table 1. 2022 Energy Code Sections Applicable to Multifamily Buildings

COMMERCIAL KITCHENS

THE ALL-ELECTRIC KITCHEN



COMMERCIAL KITCHENS

FROM FAST SERVE TO FINE DINING – ALL ELECTRIC

COMMON RCFE AMENITIES

ELECTRIC FIREPLACES

D. INCREASE RESILIENCE

USING RENEWABLES TO IMPACT RESILIENCE & SAVE MONEY

RISK AND RESILIENCE

HURRICANES

"The state's care facilities — about 700 nursing homes and 3,470 assisted-living facilities — have been <u>preparing for the storm</u> for days. As of Wednesday morning, at least 35 facilities housing 3,000 residents had evacuated, mostly in low-lying areas like Collier and Sarasota counties, according to Knapp. In the last week, FHCA's members have been performing fuel checks for generators, restocking supplies and hardening building exteriors." - <u>Kelsey Butler</u> and <u>Ella Ceron</u> Bloomberg News

Hurricane Ian barely affects solar community in Florida

Babcock Ranch, a community near Fort Meyers, Florida, was built with climate resiliency in mind.

OCTOBER 10, 2022 RYAN KENNEDY

COMMERCIAL & INDUSTRIAL PV GRIDS & INTEGRATION TECHNOLOGY AND R&D U

UTILITY SCALE PV

UNITED STATES

The Babcock Preserve Solar Energy Center

Image: Florida Light and Power

RISK AND RESILIENCE

WILDFIRE & HEAT WAVES

Los Angeles Times

Op-Ed: California's giant new batteries kept the lights on

SUB

"...California has a clear lesson for the world: Battery

"...California has a clear lesson for the world: Battery storage is a powerful tool for grids facing new strains from heat, cold, fire, flood or aging networks. And just as important, batteries are key to the zero-carbon future we need to avoid even greater stresses down the line."

Mike Ferry, Los Angeles Times, 9/23/2022

For the record:

9:22 a.m. Sept. 13, 2022: An earlier version of this article incorrectly stated that batteries contributed 50 megawatts on average to California's grid during two peak hours of an August 2020 heat wave. They contributed 125 megawatts on average during that time.

SUBSCRIBERS ARE READING >

FOR SUBSCRIBERS

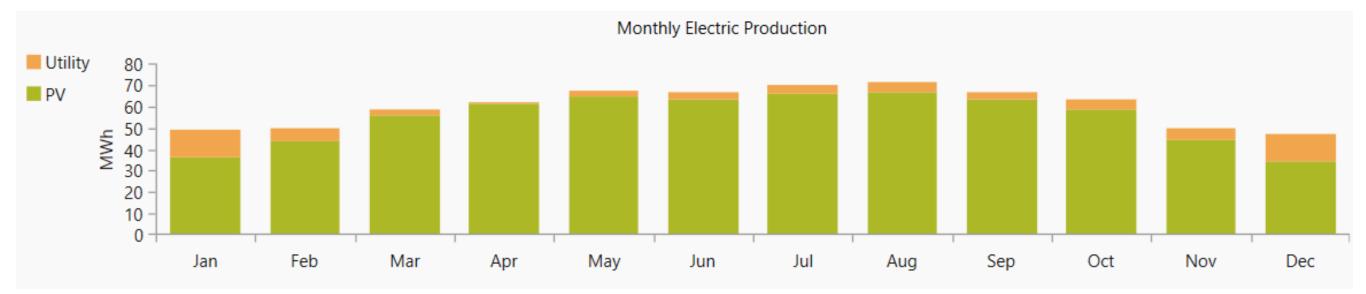
12 secret stops on California's iconic road to Big Sur

FOR SUBSCRIBERS

A MORE RESILIENT STRATEGY

MORE RESILIENCE; MORE OPTIONS

<u>Outage Duration</u> 0 - 12 Days



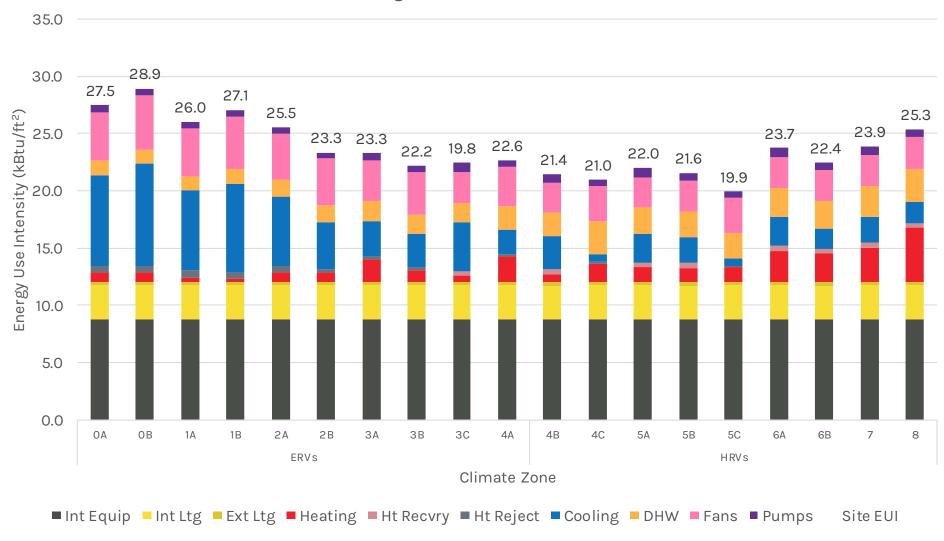
A MORE RESILIENT STRATEGY

MORE RESILIENCE; MORE OPTIONS

Resilience	PV	Battery	al Capital odeled	Simple Payback	evelized Cost of Energy	Internal Rate of Return	Co	ont PV Cost	Cont	: Battery Cost	Cont Total
Days	KWdc	kWh	\$	years		%		\$			\$
0	205	0	\$ 443,636	12	\$ 0.0934	%	\$	443,620	\$	-	\$443,620
1	205	59	\$ 517,204	12.3	\$ 0.1240	6.8%	\$	443,620	\$	91,450	\$535,070
2	352	195	\$ 1,010,000	17	\$ 0.1050	3.6%	\$	754,688	\$	242,580	\$997,268
3	311	197	\$ 933,146	20	\$ 0.1270	2.5%	\$	700,061	\$	245,068	\$945,129
4	393	216	\$ 1,130,000	14	\$ 0.0990	3.9%	\$	841,806	\$	263,952	\$1,105,758
5	414	316	\$ 1,300,000	23	\$ 0.1230	1.3%	\$	872,712	\$	375,724	\$1,248,436

FINANCIAL TOOLS TO MAKE IT HAPPEN

BIG OPPORTUNITIES IN THE IRA TAX BILL!!


		179D Commercial Buildng Energy Tax Deduction	Modified Accelerated Cost Recovery System	Bonus Depreciation	Business Energy Investment Tax Credit	Renewable Energy Production Tax Credit	Rural Energy for America Program Grants
	Duningt Town	New Construction	New Construction	New Construction	New Construction	New Construction	New Construction
	Project Type	Retrofits	Retrofits	Retrofits	Retrofits	Retrofits	Retrofits
	Eligible Technology	Energy Efficiency	Energy Efficiency	Energy Efficiency	Energy Efficiency		Energy Efficiency
Basic Project Attributes			Renewables	Renewables	Renewables	Renewables	
Attributes			Energy Storage	Energy Storage	Energy Storage		Renewables
	Eligibility Notes	Envelope, HVAC, Hot Water, Lighting	Equipment or property must largely be used for commercial purposes	Recovery Period for depreciation must be less than 20 years	Technology Dependent	As of 2022, only applicable to wind energy	Only available to Rural Businesses or Agricultural Producers

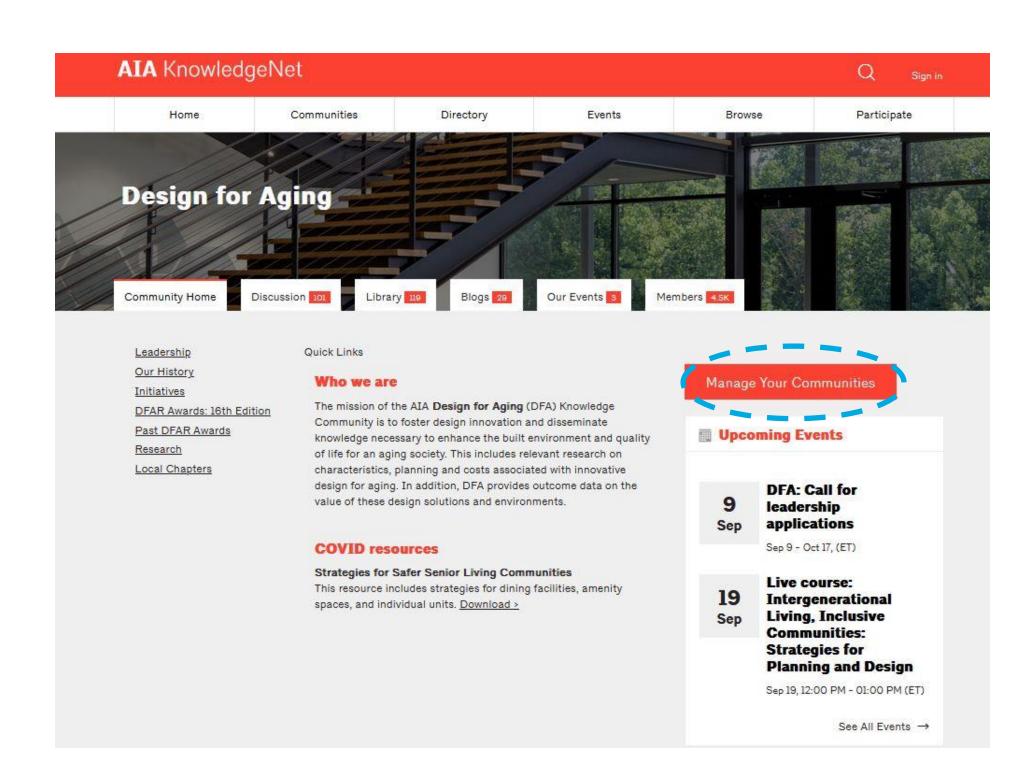
ASHRAE ADVANCED ENERGY DESIGN GUIDES

MEP SYSTEMS FOR ZERO ENERGY DESIGN

Site EUI Targets with End-Use Breakdown

DECARBONIZATION DESIGN GUIDES COMING SOON!

COMING SOON!


Feedback survey

We encourage all attendees to complete the post course survey at https://www.research.net/r/MN8BK7K by **Friday October 28, 2022**, at **5pm ET**.

Please email knowledgecommunities@aia.org if you have any questions.

Join DFA

aia.org/dfa

